Skip to main content

Advertisement

Log in

Human tissue allograft processing: impact on in vitro and in vivo biocompatibility

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This work investigates the impact of chemical and physical treatments on biocompatibility for human bone/tendon tissues. Nontreated and treated tissues were compared. In vitro testing assessed indirect and direct cytotoxicity. Tissues were subcutaneously implanted in rats to assess the immunological, recolonization, and revascularization processes at 2–4 weeks postimplantation. No significant cytotoxicity was found for freeze-dried treated bones and tendons in comparison to control. The cellular adhesion was significantly reduced for cells seeded on these treated tissues after 24 h of direct contact. A significant cytotoxicity was found for frozen treated bones in comparison to freeze-dried treated bones. Tissue remodeling with graft stability, no harmful inflammation, and neo-vascularization was observed for freeze-dried chemically treated bones and tendons. Frozen-treated bones were characterized by a lack of matrix recolonization at 4 weeks postimplantation. In conclusion, chemical processing with freeze-drying of human tissues maintains in vitro biocompatibility and in vivo tissue remodeling for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Delloye C, Cornu O, Druez V, Barbier O. Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br. 2007;89:574–9.

    Article  PubMed  CAS  Google Scholar 

  2. Docquier PL, Paul L, Mousny M, Cornu O, Delloye C. The use of allografts in paediatric orthopaedic surgery. Acta Orthop Belg. 2007;73:551–7.

    PubMed  Google Scholar 

  3. Engh GA, Ammeen DJ. Use of structural allograft in revision total knee arthroplasty in knees with severe tibial bone loss. J Bone Joint Surg Am. 2007;89:2640–7.

    Article  PubMed  Google Scholar 

  4. Nevins M, Hanratty J, Lynch SE. Clinical results using recombinant human platelet-derived growth factor and mineralized freeze-dried bone allograft in periodontal defects. Int J Periodontics Restorative Dent. 2007;27:421–7.

    PubMed  Google Scholar 

  5. Gok A, Erkutlu I, Alptekin M, Kanlikama M. Three-layer reconstruction with fascia lata and vascularized pericranium for anterior skull base defects. Acta Neurochir (Wien). 2004;146:53–6.

    Article  CAS  Google Scholar 

  6. Errani C, Schuster S, Biagini R, et al. Reconstruction with fascia lata allograft of the posterior vertebra elements after resection for aneurysmal bone cyst in a child. Eur Spine J. 2007;16:1531–5.

    Article  PubMed  Google Scholar 

  7. Dufrane D, Mourad M, van Steenberghe M, Goebbels RM, Gianello P. Regeneration of abdominal wall musculofascial defects by a human acellular collagen matrix. Biomaterials. 2008;29:2237–48.

    Article  PubMed  CAS  Google Scholar 

  8. Jang YJ, Wang JH, Sinha V, Song HM, Lee BJ. Tutoplast-processed fascia lata for dorsal augmentation in rhinoplasty. Otolaryngol Head Neck Surg. 2007;137:88–92.

    Article  PubMed  Google Scholar 

  9. Delloye C. Tissue allografts and health risks. Acta Orthop Belg. 1994;60(Suppl 1):62–7.

    PubMed  Google Scholar 

  10. Carlson ER, Marx RE, Buck BE. The potential for HIV transmission through allogeneic bone. A review of risks and safety. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80:17–23.

    Article  PubMed  CAS  Google Scholar 

  11. Conrad EU, Gretch DR, Obermeyer KR, et al. Transmission of the hepatitis-C virus by tissue transplantation. J Bone Joint Surg Am. 1995;77:214–24.

    PubMed  CAS  Google Scholar 

  12. Tomford WW. Transmission of disease through transplantation of musculoskeletal allografts. J Bone Joint Surg Am. 1995;77:1742–54.

    PubMed  CAS  Google Scholar 

  13. Eastlund T. Bacterial infection transmitted by human tissue allograft transplantation. Cell Tissue Bank. 2006;7:147–66.

    Article  PubMed  Google Scholar 

  14. Lelie PN, Zaaijer HL, Cuypers HT. Risk of virus transmission by tissue, blood, and plasma products. Transplant Proc. 1996;28:2939.

    PubMed  CAS  Google Scholar 

  15. Pinkowski JL, Rodrigo JJ, Sharkey NA, Vasseur PB. Immune response to nonspecific and altered tissue antigens in soft tissue allografts. Clin Orthop Relat Res. 1996;326:80–5.

    Article  PubMed  Google Scholar 

  16. Pinkowski JL, Reiman PR, Chen SL. Human lymphocyte reaction to freeze-dried allograft and xenograft ligamentous tissue. Am J Sports Med. 1989;17:595–600.

    Article  PubMed  CAS  Google Scholar 

  17. Minami A, Usui M, Ishii S, Kobayashi H. The in vivo effects of various immunoreactive treatments on allogeneic tendon grafts. J Hand Surg (Am). 1983;8:888–93.

    CAS  Google Scholar 

  18. Minami A, Ishii S, Ogino T, Oikawa T, Kobayashi H. Effect of the immunological antigenicity of the allogeneic tendons on tendon grafting. Hand. 1982;14:111–9.

    Article  PubMed  CAS  Google Scholar 

  19. Dufrane D, Marchal C, Cornu O, Raftopoulos C, Delloye C. Clinical application of a physically and chemically processed human substitute for dura mater. J Neurosurg. 2003;98:1198–202.

    Article  PubMed  Google Scholar 

  20. Dufrane D, Cornu O, Delloye C, Schneider YJ. Physical and chemical processing for a human dura mater substitute. Biomaterials. 2002;23:2979–88.

    Article  PubMed  CAS  Google Scholar 

  21. Anastasescou M, Cornu O, Banse X, Konig J, Hassoun A, Delloye C. Ethanol treatment of tendon allografts: a potential HIV inactivating procedure. Int Orthop. 1998;22:252–4.

    Article  PubMed  CAS  Google Scholar 

  22. Dufrane D, Delloye C, McKay IJ, et al. Indirect cytotoxicity evaluation of pseudowollastonite. J Mater Sci: Mater Med. 2003;14:33–8.

    Article  CAS  Google Scholar 

  23. Papadimitriou E, Lelkes PI. Measurement of cell numbers in microtiter culture plates using the fluorescent dye Hoechst 33258. J Immunol Methods. 1993;162:41–5.

    Article  PubMed  CAS  Google Scholar 

  24. Dufrane D, Steenberghe M, Goebbels RM, Saliez A, Guiot Y, Gianello P. The influence of implantation site on the biocompatibility and survival of alginate encapsulated pig islets in rats. Biomaterials. 2006;27:3201–8.

    Article  PubMed  CAS  Google Scholar 

  25. Thaunat O, Badet L, El Jaafari A, Kanitakis J, Dubernard JM, Morelon E. Composite tissue allograft extends a helping hand to transplant immunologists. Am J Transplant. 2006;6:2238–42.

    Article  PubMed  CAS  Google Scholar 

  26. Lee WP, Yaremchuk MJ, Pan YC, Randolph MA, Tan CM, Weiland AJ. Relative antigenicity of components of a vascularized limb allograft. Plast Reconstr Surg. 1991;87:401–11.

    Article  PubMed  CAS  Google Scholar 

  27. Elves MW, Salama R. A study of the development of cytotoxic antibodies produced in recipients of xenografts (heterografts) of iliac bone. J Bone Joint Surg Br. 1974;56:331–9.

    PubMed  CAS  Google Scholar 

  28. Stevenson S. Biology of bone grafts. Orthop Clin North Am. 1999;30:543–52.

    Article  PubMed  CAS  Google Scholar 

  29. Skjodt H, Moller T, Freiesleben SF. Human osteoblast-like cells expressing MHC class II determinants stimulate allogeneic and autologous peripheral blood mononuclear cells and function as antigen-presenting cells. Immunology. 1989;68:416–20.

    PubMed  CAS  Google Scholar 

  30. Moreau MF, Gallois Y, Basle MF, Chappard D. Gamma irradiation of human bone allografts alters medullary lipids and releases toxic compounds for osteoblast-like cells. Biomaterials. 2000;21:369–76.

    Article  PubMed  CAS  Google Scholar 

  31. Wozniak MA, Modzelewska K, Kwong L, Keely PJ. Focal adhesion regulation of cell behavior. Biochim Biophys Acta. 2004;1692:103–19.

    PubMed  CAS  Google Scholar 

  32. Rosso F, Giordano A, Barbarisi M, Barbarisi A. From cell-ECM interactions to tissue engineering. J Cell Physiol. 2004;199:174–80.

    Article  PubMed  CAS  Google Scholar 

  33. Martins AM, Santos MI, Azevedo HS, Malafaya PB, Reis RL. Natural origin scaffolds with in situ pore forming capability for bone tissue engineering applications. Acta Biomater. 2008;4:1637–45.

    Article  PubMed  Google Scholar 

  34. Montanaro L, Arciola CR, Campoccia D, Cervellati M. In vitro effects on MG63 osteoblast-like cells following contact with two roughness-differing fluorohydroxyapatite-coated titanium alloys. Biomaterials. 2002;23:3651–9.

    Article  PubMed  CAS  Google Scholar 

  35. Cheung DT, Perelman N, Tong D, Nimni ME. The effect of gamma-irradiation on collagen molecules, isolated alpha-chains, and crosslinked native fibers. J Biomed Mater Res. 1990;24:581–9.

    Article  PubMed  CAS  Google Scholar 

  36. Bowes JH, Moss JA. The effect of gamma radiation on collagen. Radiat Res. 1962;16:211–23.

    Article  PubMed  CAS  Google Scholar 

  37. Bailey AJ, Rhodes DN, Cater CW. Irradiation-induced crosslinking of collagen. Radiat Res. 1964;22:606–21.

    Article  PubMed  CAS  Google Scholar 

  38. Davidson RJ, Cooper DR. The effect of gamma-irradiation on soluble collagen. Biochem J. 1968;107:29–34.

    PubMed  CAS  Google Scholar 

  39. Leontiou I, Matthopoulos DP, Tzaphlidou M, Glaros D. The effect of gamma irradiation on collagen fibril structure. Micron. 1993;14:13–6.

    Article  Google Scholar 

  40. Friedlaender GE, Strong DM, Tomford WW, Mankin HJ. Long-term follow-up of patients with osteochondral allografts. A correlation between immunologic responses and clinical outcome. Orthop Clin North Am. 1999;30:583–8.

    Article  PubMed  CAS  Google Scholar 

  41. Horowitz MC, Friedlaender GE. Induction of specific T-cell responsiveness to allogeneic bone. J Bone Joint Surg Am. 1991;73:1157–68.

    PubMed  CAS  Google Scholar 

  42. Gouk SS, Lim TM, Teoh SH, Sun WQ. Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed Mater Res B Appl Biomater. 2008;84:205–17.

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the “Foundation Salus Sanguinis.” We are grateful to all members of University Tissue Bank for tissue procurement and processing. We thank G. Beaurin for his expert technical assistance and P. Segers for her editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Dufrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fawzi-Grancher, S., Goebbels, R.M., Bigare, E. et al. Human tissue allograft processing: impact on in vitro and in vivo biocompatibility. J Mater Sci: Mater Med 20, 1709–1720 (2009). https://doi.org/10.1007/s10856-009-3726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3726-0

Keywords

Navigation