Skip to main content
Log in

Enhanced osteointegration of orthopaedic implant gradient coating composed of bioactive glass and nanohydroxyapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

We conducted histologic and histomorphometric studies to evaluate the osteointegration of gradient coatings composed of bioactive glass and nanohydroxyapatite (BG–nHA) on titanium-alloy orthopaedic implants and surrounding bone tissue in vivo. Titanium-alloy implants with a gradient coating (gradient coating group), uncoated implants (uncoated group), and implants with a conventional hydroxyapatite (HA) coating (HA coating group) were randomly implanted in bilateral femoral condyles of 36 male New Zealand rabbits. The bone–implant contact at 12 and 24 weeks and the new bone volume in the notch created for observing bone ingrowth at 4, 12, and 24 weeks were found greater in the gradient coating group than those in both the uncoated group and the HA coating group (p < 0.05). Fluorescence micrographs showed active osteogenesis in the gradient coating group at 4 weeks after implantation. These findings indicated that BG–nHA gradient coatings could enhance the osteointegration of orthopaedic implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gallo J, Landor I, Cechova I, Jahoda D. Comparison of hydroxyapatite-coated stems in total hip arthroplasty after a minimum 10-years follow-up. Acta Chir Orthop Traumatol Cech. 2008;75(5):339–46.

    CAS  PubMed  Google Scholar 

  2. Shetty AA, Slack R, Tindall A, James KD, Rand C. Results of a hydroxyapatite-coated (Furlong) total hip replacement: a 13–15-year follow-up. J Bone Joint Surg Br. 2005;87(8):1050–4.

    Article  CAS  PubMed  Google Scholar 

  3. Wei M, Ruys AJ, Swain MV, Milthorpe BK, Sorrell CC. Hydroxyapatite-coated metals: interfacial reactions during sintering. J Mater Sci. 2005;16(2):101–6.

    MATH  CAS  Google Scholar 

  4. Rakngarm A, Mutoh Y. Characterization and fatigue damage of plasma sprayed HAp top coat with Ti and HAp/Ti bond coat layers on commercially pure titanium substrate. J Mech Behav Biomed Mater. 2009;2(5):444–53.

    Article  PubMed  Google Scholar 

  5. Chen CC, Huang TH, Kao CT, Ding SJ. Characterization of functionally graded hydroxyapatite/titanium composite coatings plasma-sprayed on Ti alloys. J Biomed Mater Res B Appl Biomater. 2006;78(1):146–52.

    PubMed  Google Scholar 

  6. Kweh SW, Khor KA, Cheang P. An in vitro investigation of plasma sprayed hydroxyapatite (HA) coatings produced with flame-spheroidized feedstock. Biomaterials. 2002;23(3):775–85.

    Article  CAS  PubMed  Google Scholar 

  7. Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep. 2004;47(3–4):49–121.

    Article  CAS  Google Scholar 

  8. Heimann RB. Thermal spraying of biomaterials. Surf Coat Tech. 2006;201(5):2012–9.

    Article  CAS  Google Scholar 

  9. Kurzweg H, Heimann RB, Troczynski T. Adhesion of thermally sprayed hydroxyapatite-bond-coat systems measured by a novel peel test. J Mater Sci. 1998;9(1):9–16.

    CAS  Google Scholar 

  10. Capello WN, D′Antonio JA, Jaffe WL, Geesink RG, Manley MT, Feinberg JR. Hydroxyapatite-coated femoral components: 15-year minimum follow-up. Clin Orthop Relat Res. 2006;453:75–80.

    Article  PubMed  Google Scholar 

  11. Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci. 1986;21(2):536–40.

    Article  CAS  ADS  Google Scholar 

  12. Peddi L, Brow RK, Brown RF. Bioactive borate glass coatings for titanium alloys. J Mater Sci. 2008;19(9):3145–52.

    CAS  Google Scholar 

  13. Moritz N, Vedel E, Ylanen H, Jokinen M, Hupa M, Yli-Urpo A. Characterisation of bioactive glass coatings on titanium substrates produced using a CO2 laser. J Mater Sci. 2004;15(7):787–94.

    CAS  Google Scholar 

  14. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials. 2000;21(17):1803–10.

    Article  CAS  PubMed  Google Scholar 

  15. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res. 2000;51(3):475–83.

    Article  CAS  PubMed  Google Scholar 

  16. Guo X, Gough JE, Xiao P, Liu J, Shen Z. Fabrication of nanostructured hydroxyapatite and analysis of human osteoblastic cellular response. J Biomed Mater Res A. 2007;82(4):1022–32.

    PubMed  Google Scholar 

  17. Li Z, Qu Y, Zhang X, Yang B. Bioactive nano-titania ceramics with biomechanical compatibility prepared by doping with piezoelectric BaTiO(3). Acta Biomater. 2009;5(6):2189–95.

    Article  CAS  PubMed  Google Scholar 

  18. Xie XH, Tang TT, Zeng SX, Du RL, Yuan Z, Dai KR. The mechanical properties of bioactive glass/nanohydroxyapatite gradient coatings. J Med Biomech. 2007;22(2):171–6.

    CAS  Google Scholar 

  19. Du RL, Zeng SX, Hu HY, Xie XH. Hydroxyapatite and bioactive glass composite coating on Ti–6Al–4 V. Bioceramics. 2006;19:589–92.

    Google Scholar 

  20. Xie XH, Tang TT, Zeng SX, Du RL, Yuan Z, Dai KR. Biocompatibility of the gradient coating composed of bioactive glass and nanohydroxyapatite. Chin J Biomed Eng. 2007;13(3):156–9.

    CAS  Google Scholar 

  21. Yamada K, Imamura K, Itoh H, Iwata H, Maruno S. Bone bonding behavior of the hydroxyapatite containing glass-titanium composite prepared by the Cullet method. Biomaterials. 2001;22(16):2207–14.

    Article  CAS  PubMed  Google Scholar 

  22. Allegrini S Jr, Rumpel E, Kauschke E, Fanghanel J, Konig B Jr. Hydroxyapatite grafting promotes new bone formation and osteointegration of smooth titanium implants. Ann Anat. 2006;188(2):143–51.

    Article  CAS  PubMed  Google Scholar 

  23. Guglielmotti MB, Renou S, Cabrini RL. A histomorphometric study of tissue interface by laminar implant test in rats. Int J Oral Maxillofac Implants. 1999;14(4):565–70.

    CAS  PubMed  Google Scholar 

  24. Bauer TW, Geesink RC, Zimmerman R, McMahon JT. Hydroxyapatite-coated femoral stems. Histological analysis of components retrieved at autopsy. J Bone Joint Surg Am. 1991;73(10):1439–52.

    CAS  PubMed  Google Scholar 

  25. Klein CP, Patka P, Wolke JG, De Blieck-Hogervorst JM, De Groot K. Long-term in vivo study of plasma-sprayed coatings on titanium alloys of tetracalcium phosphate, hydroxyapatite and alpha-tricalcium phosphate. Biomaterials. 1994;15(2):146–50.

    Article  CAS  PubMed  Google Scholar 

  26. Soballe K, Hansen ES, Brockstedt-Rasmussen H, Hjortdal VE, Juhl GI, Pedersen CM, et al. Gap healing enhanced by hydroxyapatite coating in dogs. Clin Orthop Relat Res 1991 Nov;(272):300–7.

  27. Rokkum M, Reigstad A, Johansson CB. HA particles can be released from well-fixed HA-coated stems: histopathology of biopsies from 20 hips 2–8 years after implantation. Acta Orthop Scand. 2002;73(3):298–306.

    Article  PubMed  Google Scholar 

  28. Wheeler SL. Eight-year clinical retrospective study of titanium plasma-sprayed and hydroxyapatite-coated cylinder implants. Int J Oral Maxillofac Implants. 1996;11(3):340–50.

    CAS  PubMed  Google Scholar 

  29. Zheng X, Huang M, Ding C. Bond strength of plasma-sprayed hydroxyapatite/Ti composite coatings. Biomaterials. 2000;21(8):841–9.

    Article  CAS  PubMed  Google Scholar 

  30. Crawford GA, Chawla N, Das K, Bose S, Bandyopadhyay A. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. Acta Biomater. 2007;3(3):359–67.

    Article  CAS  PubMed  Google Scholar 

  31. Chou BY, Chang E. Plasma-sprayed zirconia bond coat as an intermediate layer for hydroxyapatite coating on titanium alloy substrate. J Mater Sci. 2002;13(6):589–95.

    CAS  Google Scholar 

  32. Vamsi Krishna B, Xue W, Bose S, Bandyopadhyay A. Functionally graded Co–Cr–Mo coating on Ti–6Al–4 V alloy structures. Acta Biomater. 2008;4(3):697–706.

    Article  CAS  PubMed  Google Scholar 

  33. Goyenvalle E, Aguado E, Nguyen JM, Passuti N, Le Guehennec L, Layrolle P, et al. Osteointegration of femoral stem prostheses with a bilayered calcium phosphate coating. Biomaterials. 2006;27(7):1119–28.

    Article  CAS  PubMed  Google Scholar 

  34. Ning CY, Wang YJ, Lu WW, Qiu QX, Lam RW, Chen XF, et al. Nano-structural bioactive gradient coating fabricated by computer controlled plasma-spraying technology. J Mater Sci. 2006;17(10):875–84.

    CAS  Google Scholar 

  35. Chen F, Lam WM, Lin CJ, Qiu GX, Wu ZH, Luk KD, et al. Biocompatibility of electrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface: in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res B Appl Biomater. 2007;82(1):183–91.

    CAS  PubMed  Google Scholar 

  36. Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials. 2004;25(18):4175–83.

    Article  CAS  PubMed  Google Scholar 

  37. Li P. Biomimetic nano-apatite coating capable of promoting bone ingrowth. J Biomed Mater Res A. 2003;66(1):79–85.

    Article  PubMed  CAS  Google Scholar 

  38. Lewandrowski KU, Bondre SP, Wise DL, Trantolo DJ. Enhanced bioactivity of a poly(propylene fumarate) bone graft substitute by augmentation with nanohydroxyapatite. Biomed Mater Eng. 2003;13(2):115–24.

    CAS  PubMed  Google Scholar 

  39. Han YJ, Loo SC, Lee J, Ma J. Investigation of the bioactivity and biocompatibility of different glass interfaces with hydroxyapatite, fluorohydroxyapatite and 58S bioactive glass. Biofactors. 2007;30(4):205–16.

    Article  CAS  PubMed  Google Scholar 

  40. Gupta R, Kumar A. Bioactive materials for biomedical applications using sol-gel technology. Biomed Mater. 2008;3(3):034005.

    Article  PubMed  MathSciNet  CAS  Google Scholar 

  41. Jones JR, Tsigkou O, Coates EE, Stevens MM, Polak JM, Hench LL. Extracellular matrix formation and mineralization on a phosphate-free porous bioactive glass scaffold using primary human osteoblast (HOB) cells. Biomaterials. 2007;28(9):1653–63.

    Article  CAS  PubMed  Google Scholar 

  42. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014–7.

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276(2):461–5.

    Article  CAS  PubMed  Google Scholar 

  44. Gao T, Aro HT, Ylanen H, Vuorio E. Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro. Biomaterials. 2001;22(12):1475–83.

    Article  CAS  PubMed  Google Scholar 

  45. Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res 1992 Jan;(274):124-34.

  46. Chamay A, Tschantz P. Mechanical influences in bone remodeling experimental research on Wolff’s law. J Biomech. 1972;5(2):173–80.

    Article  CAS  PubMed  Google Scholar 

  47. Eberhardt C, Habermann B, Muller S, Schwarz M, Bauss F, Kurth AH. The bisphosphonate ibandronate accelerates osteointegration of hydroxyapatite-coated cementless implants in an animal model. J Orthop Sci. 2007;12(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  48. Stewart M, Welter JF, Goldberg VM. Effect of hydroxyapatite/tricalcium-phosphate coating on osteointegration of plasma-sprayed titanium alloy implants. J Biomed Mater Res A. 2004;69(1):1–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ling Qin (The Chinese University of Hong Kong) for providing valuable editorial assistance. This research was supported by grants 0552nm024, 054119564 and 0852nm07200 from the Shanghai Science and Technology Development Fund, Shanghai Leading Academic Discipline Project (S30206), a grant from the Shanghai Shuguang Educational Funding Committee and program for Shanghai Key Laboratory of Orthopaedic Implant (08DZ2230330) and Natural Science Foundation of Jiangsu province (No. BK2009449).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Ting Tang.

Additional information

Xin-Hui Xie, Xiao-Wei Yu are Co-first authors with equal contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, XH., Yu, XW., Zeng, SX. et al. Enhanced osteointegration of orthopaedic implant gradient coating composed of bioactive glass and nanohydroxyapatite. J Mater Sci: Mater Med 21, 2165–2173 (2010). https://doi.org/10.1007/s10856-010-4077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4077-6

Keywords

Navigation