Skip to main content

Advertisement

Log in

A spectroscopic investigation into the setting and mechanical properties of titanium containing glass polyalkenoate cements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Titanium (Ti) implants are extensively used in a number of biomedical and dental applications. This work introduces Ti into the glass phase of a zinc based glass polyalkenoate cement (GPC) and investigates changes in handling and mechanical properties considering two molecular weight polyacrylic acids (PAA), E9 and E11. Considering the handling properties, the working time (T w) increased from 50 sE9, 32 sE11 (BT 101, Ti-free) to 169 sE9, 74 sE11 with TW-Z (highest Ti content), respectively. The setting time (T s) increased from 76 sE9, 47 sE11 (BT 101) to 303 sE9, 232 sE11 with TW-Z, respectively. Ti was also found to have a significant increase on both compressive (σ c) and biaxial flexural strength (σ f), where σ c increased from 36 MPaE9, 56 MPaE11 (BT 101) to 56 MPaE9 and 70 MPaE11 with TW-Z respectfully. σ f also increased from 11 MPaE9, 22 MPaE11 (BT 101) to 22 MPaE9 and 77 MPaE11 with TW-Z, respectively. No increase in mechanical properties was evident with respect to maturation. Raman Spectroscopy was employed to investigate changes in glass structure and the setting of the cements with. This revealed increased glass network disruption with increasing TiO2 content and matured cement setting with TW-Z as compared to the control BT 101. FT-IR was then employed to investigate any additional setting mechanism and changes with time. Spectroscopy determined that Ca2+/Sr2+PAA complexes are primarily responsible for the setting and mechanical strength with no changes occurring over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Byon E, Moon S, Cho S-B, Jeong C-Y, Jeong Y, Sul Y-T. Electrochemical property and apatite formation of metal ion implanted titanium for medical implants. Surf Coat Technol. 2005;200(1–4):1018–21.

    Article  CAS  Google Scholar 

  2. González JEG, Mirza-Rosca JC. Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications. J Electroanal Chem. 1999;471(2):109–15.

    Article  Google Scholar 

  3. Schwager K. Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit. Eur Arch Otorhinolaryngol. 1998;255:396–401.

    Article  CAS  PubMed  Google Scholar 

  4. Lausmaa J. Surface Spectroscopic characterization of titanium implant materials. J Electron Spectrosc Relat Phenom. 1996;81:343–61.

    Article  CAS  Google Scholar 

  5. Fawzy AS, El-Askary FS. Effect acidic and alkaline/heat treatments on the bond strength of different luting cements to commercially pure titanium. J Dent. 2009;37:255–63.

    Article  CAS  PubMed  Google Scholar 

  6. Turpin YL, Tardive RD, Tallec A, Le Menn AC. Corrosion susceptibility of titanium covered by dental cements. Dent Mater. 2000;16:57–61.

    Article  CAS  PubMed  Google Scholar 

  7. Takeuchi M, Abe Y, Yoshida Y, Nakayama Y, Okazaki M, Akagawa Y. Acid pretreatment of titanium implants. Biomaterials. 2003;24(10):1821–7.

    Article  CAS  PubMed  Google Scholar 

  8. Takadama H, Kim H-M, Kokubo T, Nakamura T. XPS study of the process of apatite formation on bioactive Ti-6Al-4V alloy in simulated body fluid. Sci Technol Adv Mater. 2001;2:389–96.

    Article  CAS  Google Scholar 

  9. Kokubo T, Kim H-M, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.

    Article  CAS  PubMed  Google Scholar 

  10. Nicholson JW, Wilson AD. Acid-base cements—their biomedical and industrial applications. In: West AR, Baxter H, editors. Chemistry of solid state materials. Vol. 3. Cambridge: Cambridge University Press; 1993.

  11. Wren AW, Laffir FR, Kidari A, Towler MR. The Structural Role of Titanium in Ca–Sr–Zn–Si/Ti Glasses for Medical Applications. J Non-Cryst Solids. 2010 (Submitted manuscript).

  12. Wren AW, Boyd D, Towler MR. The processing, mechanical properties and bioactivity of strontium based glass polyalkenoate cements. J Mater Sci: Mater Med. 2008;19:1737–43.

    Article  CAS  Google Scholar 

  13. Marie PJ. Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteoporos Int. 2005;16:S7–10.

    Article  CAS  PubMed  Google Scholar 

  14. Marie PJ. Strontium ranelate: new insights into its dual mode of action. Bone. 2007;40(5):S5–8.

    Article  CAS  Google Scholar 

  15. Yamaguchi M, Ma ZJ. Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Bone Miner Metab. 2001;19:38–44.

    Article  PubMed  Google Scholar 

  16. Yamaguchi M, Ma ZJ. Stimulatory effect of zinc on Deoxyribonucleic acid synthesis in bone growth of newborn rats:enhancement with zinc and insulin like growth factor-I. Calcif Tissue Int. 2001;69:158–63.

    Article  PubMed  Google Scholar 

  17. Wren AW, Boyd D, Thornton R, Cooney JC, Towler MR. Antibacterial properties of a tri-sodium citrate modified glass polyalkenoate cement. J Biomed Mater Res B. 2009;90-B(2):700–9.

    Google Scholar 

  18. Sawai J. Quantative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods. 2003;54:177–82.

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater. 2001;3:643–6.

    Article  CAS  Google Scholar 

  20. Higgs WA, Lucksanasombool P, Higgs RJED, Swain MV. Comparison of the material properties of PMMA and glass ionomer based cements for use in orthopaedic surgery. J Mater Sci: Mater Med. 2001;12:453–60.

    Article  CAS  Google Scholar 

  21. Khun K-D. Bone cements: up-to-date comparison of physical and chemical properties of commercial materials. New York: Springer; 2000.

    Google Scholar 

  22. Dunne NJ, Orr JF. Thermal characteristics of curing acrylic bone cement. ITBM-RBM. 2001;22(2):88–97.

    Article  Google Scholar 

  23. Bahna P, Dvorak T, Hanna H, Yasko AW, Hachem R, Raad I. Orthopaedic metal devices coated with a novel antiseptic dye for the prevention of bacterial infection. Int J Antimicrob Agents. 2007;29:593–6.

    Article  CAS  PubMed  Google Scholar 

  24. Heini P, Berlemann U. Bone substitutes in vetebroplasty. Eur Spine J. 2001;10:S205–13.

    Article  PubMed  Google Scholar 

  25. International Organization for Standardization 9917. Dental Water Based Cements (E), in Case Postale 56: Geneva, Switzerland, CH-11211; 1991.

  26. Williams JA, Billington RW, Pearson GJ. The effect of the disc support system on biaxial tensile strength of a glass ionomer cement. Dent Mater. 2002;18:376–9.

    Article  CAS  PubMed  Google Scholar 

  27. Nicholson JW. Chemistry of glass ionomer cements. Biomaterials. 1998;19:485–94.

    Article  CAS  PubMed  Google Scholar 

  28. Nicholson JW, Brookman PJ, Lacy OM, Wilson AD. Fourier transform infrared spectroscopic study of the role of tartaric acid in glass ionomer cements. J Dent Res. 1988;67:1451–1454.

    CAS  PubMed  Google Scholar 

  29. McMillian PW. Structural studies of silicate glasses and melt-applications and limitations of Raman spectroscopy. Am Mineral. 1984;69:622–44.

    ADS  Google Scholar 

  30. Iwamoto N, Tsunawaki Y, Masao F, Hatfori T. Raman spectra of K2O-SiO2 and K2O-SiO2-TiO2 glasses. J Non-Cryst Solids. 1975;18:303–6.

    Article  CAS  ADS  Google Scholar 

  31. Kusaeiraki K. Infrared and Raman spectra of vitreous silica and sodium silicates containing titanium. J Non-Cryst Solids. 1987;95 & 96:411–8.

    Google Scholar 

  32. Chen CC, Ho C-C, Chen C-HD, Ding S-J. Physicochemical properties of calcium silicate cements for endodontic treatment. J Endod. 2009;35(9):1288–91.

    Article  PubMed  Google Scholar 

  33. Xie D, Feng D, Chung I, Eberhardt AW. A hybrid zinc-calcium-silicate polyalkenoate bone cement. Biomaterials. 2003;24:2749–57.

    Article  CAS  PubMed  Google Scholar 

  34. De Mayer EAP, Verbeeck RMH, Vercruysse CMJ. Infrared spectroscopic study of acid-degradable glass. J Dent Res. 2002;81(8):552–5.

    Article  Google Scholar 

  35. Tomlinson SK, Ghita OR, Hooper RM, Evans KE. Investigation of the dual setting mechanism of a novel dental cement using infrared spectroscopy. Vib Spectrosc. 2007;45:10–7.

    Article  CAS  Google Scholar 

  36. Dong J, Ozaki Y, Nakashima K. Infrared Raman and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules. 1997;30:1111–7.

    Article  CAS  ADS  Google Scholar 

  37. Young AM, Sherpa A, Pearson G, Schottlander B, Waters DN. Use of Raman spectroscopy in the characterization of the acid-base reaction in glass ionomer cements. Biomaterials. 2000;21:1971–9.

    Article  CAS  PubMed  Google Scholar 

  38. Hill RG, Stamboulis A, Law RV, Clifford A, Towler MR, Crowley C. The influence of strontium substitution in fluorapatite glasses and glass-ceramics. J Non-Cryst Solids. 2004;336(3):223–9.

    Article  CAS  ADS  Google Scholar 

  39. Matsuya S, Maeda T, Ohta M. IR and NMR analysis of hardening and maturation of glass ionomer cement. J Dent Res. 1996;75:1920–7.

    Article  CAS  PubMed  Google Scholar 

  40. Crisp S, Pringuer MA, Wardleworth D, Wilson AD. Reactions in glass ionomer cements: II. An infrared spectroscopic study. J Dent Res. 1974;53:1414–1419.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Enterprise Ireland Grant, TD/2005/327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Wren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wren, A.W., Kidari, A., Cummins, N.M. et al. A spectroscopic investigation into the setting and mechanical properties of titanium containing glass polyalkenoate cements. J Mater Sci: Mater Med 21, 2355–2364 (2010). https://doi.org/10.1007/s10856-010-4089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4089-2

Keywords

Navigation