Skip to main content

Advertisement

Log in

Biomechanical evaluation of regenerating long bone by nanoindentation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

It is crucial to measure the mechanical function of regenerating bone in order to assess the mechanical performance of the regenerating portion as well as the efficiency of the regeneration methods. In this study, nanoindentation was applied to regenerating and intact rabbit ulnae to determine the material properties of hardness and elasticity; viscoelasticity was also investigated to precisely evaluate the material properties. Both intact and regenerating bones exhibited remarkable viscoelasticity manifested as a creep behavior during load hold at the maximum load, and the creep was significantly greater in the regenerating bone than the intact bone. The creep resulted in an overestimation of the hardness and Young’s modulus. Hence, during nanoindentation testing of bones, the effect of creep should be eliminated. Moreover, the regenerating bone had lower hardness and Young’s modulus than the intact bone. The nanoindentation technique proved to be a powerful approach for understanding the mechanical properties of regenerating bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Watanabe Y, Takai S, Arai Y, Yoshino N, Hirasawa Y. Prediction of mechanical properties of healing fractures using acoustic emission. J Orthop Res. 2001;19:548–53.

    Article  CAS  Google Scholar 

  2. Komatsubara S, Mori S, Mashiba T, Nonaka K, Seki A, Akiyama T, Miyamoto K, Cao Y, Manabe T, Norimatsu H. Human parathyroid hormone (1–34) accelerates the fracture healing process of woven to lamellar bone replacement and new cortical shell formation in rat femora. Bone. 2005;36:678–87.

    Article  CAS  Google Scholar 

  3. Fischer-Cripps AC. Nanoindentation (mechanical engineering series). 2nd ed. Berlin: Springer; 2004.

    Google Scholar 

  4. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999;32:1005–12.

    Article  CAS  Google Scholar 

  5. Turner CH, Rho JY, Takano Y, Tsui TY, Pharr GM. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques. J Biomech. 1999;32:437–41.

    Article  CAS  Google Scholar 

  6. Rho JY, Zioupos P, Currey JD, Pharr GM. Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone. 1999;25:295–300.

    Article  CAS  Google Scholar 

  7. Rho JY, Pharr GM. Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J Mater Sci Mater Med. 1999;10:485–8.

    Article  CAS  Google Scholar 

  8. Hoffler CE, Moore KE, Kozloff K, Zysset PK, Brown MB, Goldstein SA. Heterogeneity of bone lamellar-level elastic moduli. Bone. 2000;26:603–9.

    Article  CAS  Google Scholar 

  9. Rho JY, Zioupos P, Currey JD, Pharr GM. Microstructural elasticity and regional heterogeneity in human femoral bone of various ages examined by nano-indentation. J Biomech. 2002;35:189–98.

    Article  CAS  Google Scholar 

  10. Swadener JG, Rho JY, Pharr GM. Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J Biomed Mater Res. 2001;57:108–12.

    Article  CAS  Google Scholar 

  11. Fan Z, Swadener JG, Rho JY, Roy ME, Pharr GM. Anisotropic properties of human tibial cortical bone as measured by nanoindentation. J Orthop Res. 2002;20:806–10.

    Article  CAS  Google Scholar 

  12. Bembey AK, Oyen ML, Bushby AJ, Boyde A. Viscoelastic properties of bone as a function of hydration state determined by nanoindentation. Philos Mag. 2006;86:5691–703.

    Article  CAS  Google Scholar 

  13. Guidoni G, Swain M, Jäger I. Nanoindentation of wet and dry compact bone: influence of environment and indenter tip geometry on the indentation modulus. Philos Mag. 2010;90:553–65.

    Article  CAS  Google Scholar 

  14. Bushby AJ, Ferguson VL, Boyde A. Nanoindentation of bone: comparison of specimens tested in liquid and embedded in polymethylmethacrylate. J Mater Res. 2004;19:249–59.

    Article  CAS  Google Scholar 

  15. Jämsä T, Rho JY, Fan Z, MacKay CA, Marks SC Jr, Tukkanen J. Mechanical properties in long bones of rat osteopetrotic mutations. J Biomech. 2002;35:161–5.

    Article  Google Scholar 

  16. Silva MJ, Brodt MD, Fan Z, Rho JY. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J Biomech. 2004;37:1639–46.

    Article  Google Scholar 

  17. Oyen ML, Ko C-C. Examination of local variations in viscous, elastic, and plastic indentation responses in healing bone. J Mater Sci Mater Med. 2007;18:623–8.

    Article  CAS  Google Scholar 

  18. Pelled G, Tai K, Sheyn D, Zilberman Y, Kumbar S, Nair LS, Laurencin CT, Gazit D, Ortiz C. Structural and nanoindentation studies of stem cell-based tissue-engineered bone. J Biomech. 2007;40:399–411.

    Article  Google Scholar 

  19. Leong PL, Morgan EF. Measurement of fracture callus material properties via nanoindentation. Acta Biomater. 2008;4:1569–75.

    Article  CAS  Google Scholar 

  20. Tai K, Pelled G, Sheyn D, Bershteyn A, Han L, Kallai I, Zilberman Y, Ortiz C, Gazit D. Nanobiomechanics of repair bone regenerated by genetically modified mesenchymal stem cells. Tissue Eng A. 2008;14:1709–20.

    Article  CAS  Google Scholar 

  21. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.

    Article  CAS  Google Scholar 

  22. Garner E, Lakes R, Lee T, Swan C, Brand R. Viscoelastic dissipation in compact bone: implications for stress-induced fluid flow in bone. J Biomech Eng. 2000;122:166–72.

    Article  CAS  Google Scholar 

  23. Oyen ML, Cook RF. Load–displacement behavior during sharp indentation of viscous–elastic–plastic materials. J Mater Res. 2003;18:139–50.

    Article  CAS  Google Scholar 

  24. Fan Z, Rho JY. Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J Biomed Mater Res A. 2003;67:208–14.

    Article  Google Scholar 

  25. Tang B, Ngan AHW, Lu WW. Viscoelastic effects during depth-sensing indentation of cortical bone tissues. Philos Mag. 2006;86:5653–66.

    Article  CAS  Google Scholar 

  26. Olesiak SE, Oyen ML, Ferguson VL. Viscous–elastic–plastic behavior of bone using Berkovich nanoindentation. Mech Time Depend Mater. 2010;14:111–24.

    Article  CAS  Google Scholar 

  27. Ngan AHW, Wang HT, Tang B, Sze KY. Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int J Solid Struct. 2005;42:1831–46.

    Article  Google Scholar 

  28. Abbaspour A, Takata S, Sairyo K, Katoh S, Yukata K, Yasui N. Continuous local infusion of fibroblast growth factor-2 enhances consolidation of the bone segment lengthened by distraction osteogenesis in rabbit experiment. Bone. 2008;42:98–106.

    Article  CAS  Google Scholar 

  29. Chakkalakal DA, Lippielloa L, Wilsona RF, Shindella R, Connollya JF. Mineral and matrix contributions to rigidity in fracture healing. J Biomech. 1990;23:425–34.

    Article  CAS  Google Scholar 

  30. Sasaki N, Yoshikawa M. Stress relaxation in native and EDTA-treated bone as a function of mineral content. J Biomech. 1993;26:77–83.

    Article  CAS  Google Scholar 

  31. Yamamoto M, Takahashi Y, Tabata Y. Enhanced bone regeneration at a segmental bone defect by controlled release of bone morphogenetic protein-2 from a biodegradable hydrogel. Tissue Eng. 2006;12:1305–11.

    Article  CAS  Google Scholar 

  32. Tanaka M, Sakai A, Uchida S, Tanaka S, Nagashima M, Katayama T, Yamaguchi K, Nakamura T. Prostaglandin E2 receptor (EP4) selective agonist (ONO-4819.CD) accelerates bone repair of femoral cortex after drill-hole injury associated with local upregulation of bone turnover in mature rats. Bone. 2004;34:940–8.

    Article  CAS  Google Scholar 

  33. Sawa T, Tanaka K. Simplified method for analyzing nanoindentation data and evaluating performance of nanoindentation instruments. J Mater Res. 2001;16:3084–96.

    Article  CAS  Google Scholar 

  34. Akhter MP, Fan Z, Rho JY. Bone intrinsic material properties in three inbred mouse strains. Calcif Tissue Int. 2004;75:416–20.

    Article  CAS  Google Scholar 

  35. Isaksson H, Nagao S, Małkiewicz M, Julkunen P, Nowak R, Jurvelin JS. Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone. J Biomech. 2010;43:2410–7.

    Article  Google Scholar 

  36. Chaudhry B, Ashton H, Muhamed A, Yost M, Bull S, Frankel D. Nanoscale viscoelastic properties of an aligned collagen scaffold. J Mater Sci Mater Med. 2009;20:257–63.

    Article  CAS  Google Scholar 

  37. Briscoe BJ, Fioli L, Pelillo E. Nano-indentation of polymeric surfaces. J Phys D Appl Phys. 1998;31:2395–405.

    Article  CAS  Google Scholar 

  38. Anup S, Sivakumar SM, Suraishkumar GK. Influence of viscoelasticity of protein on the toughness of bone. J Mech Behav Biomed Mater. 2010;3:260–7.

    Article  CAS  Google Scholar 

  39. Ferguson VL. Deformation partitioning provides insight into elastic, plastic, and viscous contribution to bone material behavior. J Mech Behav Biomed Mater. 2009;2:364–74.

    Article  CAS  Google Scholar 

  40. Mencik J, He LH, Swain MV. Determination of viscoelastic–plastic material parameters of biomaterials by instrumented indentation. J Mech Behav Biomed Mater. 2009;2:318–25.

    Article  Google Scholar 

  41. Zhang J, Niebur GL, Ovaert TC. Mechanical property determination of bone though nano- and micro-indentation testing and finite element simulation. J Biomech. 2008;41:267–75.

    Article  Google Scholar 

  42. He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater. 2008;1:18–29.

    Article  Google Scholar 

  43. He LH, Swain MV. Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials. 2007;28:4512–20.

    Article  CAS  Google Scholar 

  44. Lees S, Bonar LC, Mook HA. A study of dense mineralized tissue by neutron diffraction. Int J Biol Macromol. 1984;6:321–6.

    Article  CAS  Google Scholar 

  45. Finlay JB, Hardie WR. Anisotropic contraction of cortical bone caused by dehydration of samples of the bovine femur in vitro. J Eng Med. 1994;208:27–32.

    Article  Google Scholar 

  46. Nohava J, Randall NX, Conté N. Novel ultra nanoindentation method with extremely low thermal drift: principle and experimental results. J Mater Res. 2009;24:873–82.

    Article  CAS  Google Scholar 

  47. Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, Umakoshi Y. Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone. 2002;31:479–87.

    Article  CAS  Google Scholar 

  48. Sasaki N, Sudoh Y. X-ray pole figure analysis of apatite crystals and collagen molecules in bone. Calcif Tissue Int. 1997;60:361–7.

    Article  CAS  Google Scholar 

  49. Nakano T, Tabata Y, Umakoshi Y. Texture and bone reinforcement (MS2061). In: Encyclopedia of materials, science and technology updates. Oxford: Elsevier; 2005. pp. 1–8.

  50. Nakano T, Awazu T, Umakoshi Y. Plastic deformation and operative slop system in mineral fluorapatite single crystal. Scr Mater. 2001;44:811–5.

    Article  CAS  Google Scholar 

  51. Viswanath B, Raghavan R, Ramamurty U, Ravishankar N. Mechanical properties and anisotropy in hydroxyapatite single crystals. Scr Mater. 2007;57:361–4.

    Article  CAS  Google Scholar 

  52. Wojtowicz A, Dziedzic-Goclawska A, Kaminski A, Stachowicz W, Wojtowicz K, Marks SC Jr, Yamauchi M. Alteration of mineral crystallinity and collagen cross-linking of bones in osteopetrotic toothless (tl/tl) rats and their improvement after treatment with colony stimulating factor-1. Bone. 1997;20:127–32.

    Article  CAS  Google Scholar 

  53. Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Camacho NP, Bostrom MPG. Callus mineralization and maturation are delayed during fracture healing in interleukin-6 knockout mice. Bone. 2007;41:928–36.

    Article  CAS  Google Scholar 

  54. Wen HB, Cui FZ, Geng QL, Li HD, Zhu XD. Microstructural investigation of the early external callus after diaphyseal fractures of human long bone. J Struct Biol. 1995;114:115–22.

    Article  CAS  Google Scholar 

  55. Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Marukawa E, Umakoshi Y. Analysis of hydroxyapatite (HAp) texture in regenerated hard tissues using micro-beam X-ray diffractometer technique. In: Ikada Y, Umakoshi Y, Hotta T, editors. Tissue engineering for therapeutic use 6. Amsterdam: Elsevier; 2002. p. 95–104.

    Google Scholar 

  56. Ishimoto T, Nakano T, Umakoshi Y, Yamamoto M, Tabata Y. Role of stress distribution on healing process of preferential alignment of biological apatite in long bones. Mater Sci Forum. 2006;512:261–4.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the “Priority Assistance of the Formation of Worldwide Renowned Centers of Research—The Global COE Program (Project: Center of Excellence for Advanced Structural and Functional Materials Design)” and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayoshi Nakano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishimoto, T., Nakano, T., Yamamoto, M. et al. Biomechanical evaluation of regenerating long bone by nanoindentation. J Mater Sci: Mater Med 22, 969–976 (2011). https://doi.org/10.1007/s10856-011-4266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4266-y

Keywords

Navigation