Skip to main content

Advertisement

Log in

Influence of nanometer scale particulate fillers on some properties of microfilled composite resin

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker’s microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker’s microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bowen RL. Properties of a silica-reinforced polymer for dental restorations. JADA. 1963;66:57–64.

    CAS  Google Scholar 

  2. Wilder AD Jr, May KN Jr, Bayne SC, Taylor DF, Leinfelder KF. Seventeen-year clinical study of ultraviolet-cured posterior composite class I and II restoration. J Esthet Dent. 1999;11:135–42.

    Article  Google Scholar 

  3. Manhart J, Chen H, Hamm G, Hickel R. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent. 2004;29:481–508.

    Google Scholar 

  4. Rueggeberg FA. From vulcanite to vinyl, a history of resins in restorative dentistry. J Prosthet Dent. 2002;87:364–79.

    Article  CAS  Google Scholar 

  5. Weinmann W, Thalacker C, Guggenberger R. Siloranes in dental composites. Dent Mater. 2005;21:68–74.

    Article  CAS  Google Scholar 

  6. Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water―effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42:465–72.

    Article  CAS  Google Scholar 

  7. Watts DC, Hindi AA. Intrinsic soft-start polymerization shrinkage-kinetics in an acrylate-based resin composite. Dent Mater. 1999;15:39–45.

    Article  CAS  Google Scholar 

  8. Garoushi S, Vallittu PK, Lassila LVJ. Short glass fiber reinforced restorative composite resin with semi-interpenetrating polymer network matrix. Dent Mater. 2007;23:1356–62.

    Article  CAS  Google Scholar 

  9. Garoushi S, Lassila LV, Tezvergil A, Vallittu PK. Static and fatigue compression test for particulate filler composite resin with fiber-reinforced composite substructure. Dent Mater. 2007;23:17–23.

    Article  CAS  Google Scholar 

  10. Tian M, Gao Y, Liu Y, Liao Y, Hedin NE, Fong H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dent Mater. 2008;24:235–43.

    Article  CAS  Google Scholar 

  11. Glenn JF. Composite and properties of unfilled and composite resin restorative materials. In: Smith DC, Williams DF, editors. Biocompatibility of dental materials. Boca Ratan, FL: CRC Press, Inc; 1982. p. 97–130.

    Google Scholar 

  12. Rüttermann S, Wandrey C, Raab WH, Janda R. Novel nano-particles as fillers for an experimental resin-based restorative material. Acta Biomater. 2008;4:1835–46.

    Article  Google Scholar 

  13. Da Costa J, Ferracane J, Paravina RD, Mazur RF, Roeder L. The effect of different polishing systems on surface roughness and gloss of various resin composites. J Esthet Restor Dent. 2007;19:214–24.

    Article  Google Scholar 

  14. Efes GB, Dorter C, Gomec Y. Clinical evaluation of an ormocer, a nanofill composite and a hybrid compsoite at 2 years. Am J Dent. 2006;19:236–40.

    Google Scholar 

  15. Söderholm KJ, Yang MC, Garcea I. Filler particle leachability of experimental dental composites. Eur J Oral Sci. 2000;108:555–60.

    Article  Google Scholar 

  16. International Standardization Organization ISO 10477 1992(E). Dentistry-Polymer based crown and bridge materials. Geneva, Switzerland: International Standardization Organization; 1992.

  17. Tjong SC. Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R. 2006;53:73–97.

    Article  Google Scholar 

  18. International Standardization Organization ISO 4049. Dentistry-Polymer based filling, restorative and luting materials. Geneva, Switzerland: International Standardization Organization; 2000

  19. Beun S, Glorieux T, Devaux J, Vreven J, Leloup G. Characterization of nanofilled compared to universal and microfilled compsoites. Dent Mater. 2007;23:51–9.

    Article  CAS  Google Scholar 

  20. Ilie N, Hickel R. Investigation on mechanical behaviour of dental composites. Clin Oral Invest. 2009;13:427–38.

    Article  Google Scholar 

  21. West RD, Malhotra VM. Rupture of nanoparticle agglomerates and formulation of Al2O3-epoxy nanocomposite using ultrasonic cavitation approach: effect on the structural and mechanical properties. Polym Eng Sci. 2006;46:421–30.

    Article  Google Scholar 

  22. Janda R, Roulet JF, Latta M, Rüttermann S. The effects of thermocycling on the flexural strength and flexural modulus of modern resin-based filling materials. Dent Mater. 2006;22:1103–8.

    Article  CAS  Google Scholar 

  23. Ferracane JL, Condon JR. Post-cure heat treatments for composites: properties and fractography. Dent Mater. 1992;8:290–5.

    Article  CAS  Google Scholar 

  24. Vallittu PK, Ruyter IE, Ekstrand K. Effect of water storage on the flexural properties of E-glass and silica fiber acrylic resin composite. Int J Prosthodont. 1998;11:340–50.

    CAS  Google Scholar 

  25. Lambrechts P, Goovaerts K, Bharadwaj D, De Munck J, Bergmans L, Peumans M, Van Meerbeek B. Degradation of tooth structure and restorative materials: a review. Wear. 2006;261:980–6.

    Article  CAS  Google Scholar 

  26. Xu HHK, Quinn JB, Giuseppetti AA. Wear and mechanical properties of nano-silica-fused whisker composites. J Dent Res. 2004;83:930–5.

    Article  CAS  Google Scholar 

  27. Drummond JL. Nanoindentation of dental composites. J Biomed Mater Res B Appl Biomater. 2006;78:27–34.

    Google Scholar 

  28. Devaprakasam D, Hatton PV, Möbus G, Inkson BJ. Nanoscale tribology, energy dissipation and failure mechanisms of nano and micro silica particle-filled polymer composites. Tribol Lett. 2009;34:11–9.

    Article  CAS  Google Scholar 

  29. Turssi GP, Ferracane JL, Vogel K. Filler features and their effect on wear and degree of conversion of particulate dental resin composites. Biomaterials. 2005;26:4932–7.

    Article  CAS  Google Scholar 

  30. Lehtinen J, Laurila T, Lassila LVJ, Tuusa S, Kienanen P, Vallittu PK, Hernberg R. Optical characterization of bisphenol-A-glycidyldimethacrylate-triethylene glycoldimethacryalate monomers and copolymers. Dent Mater. 2008;24:1324–8.

    Article  CAS  Google Scholar 

  31. Rodrigues-Junior SA, Scherrer SS, Ferracane JL, Della Bona A. Microstructural characterization and fracture behavior of a microhybrid and nanofill composite. Dent Mater. 2008;24:1281–8.

    Article  Google Scholar 

  32. Mayworm CD, Camargo SS Jr, Bastian FL. Influence of artificial saliva on abrasives wear and microhardness of dental composites filled with nanoparticles. J Dent. 2008;36:703–10.

    Article  CAS  Google Scholar 

  33. Herbstrith Segundo RM, Goncalves Mota E, Balbinot CE, Lopes Bondan J, Silva Oshima HM. Influence of storage solution and curing method on a microhybrid composite microhardness. Minerva Stomatol. 2008;57:41–6.

    CAS  Google Scholar 

  34. Vallittu PK. Oxygen inhibition of autopolymerization of poly-met hylmethacrylate—glass fibre composite. J Mater Sci-Mater M. 1997;8:489–92.

    Article  CAS  Google Scholar 

  35. Cassoni A, Oliveira Ferla JD, Albino LG, Youssef MN, Shibli JA, Rodrigues JA. Argon ion laser and halogen lamp activation of a dark and light resin composite: microhardness after long-term storage. Lasers Med Sci. 2010;25:829–34.

    Article  Google Scholar 

  36. Kanchanavasita W, Anstice HM, Pearson GJ. Long-term surface micro hardness of resin modified glass inomers. J Dent. 1998;26:707–12.

    Article  CAS  Google Scholar 

  37. Mitra SB, Wu D, Holmes BN. An application of nanotechnology in advanced dental materials. J Am Dent Assoc. 2003;134:1382–90.

    CAS  Google Scholar 

  38. Moszner N, Klapdohr S. Nanotechnology for dental composites. Int J Nanotech. 2004;1:130–56.

    CAS  Google Scholar 

  39. Uctasli MB, Bala O, Gullu A. Surface roughness of flowable and packable composite resin materials after finishing with abrasive discs. J Oral Rehabil. 2004;31:1197–202.

    Article  CAS  Google Scholar 

  40. Barbosa SH, Zanata RL, Navarro ML, Nunes OB. Effect of different finishing and polishing techniques on the surface roughness of microfilled, hybrid and packable composite resins. Braz Dent J. 2005;16:39–44.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sufyan Garoushi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garoushi, S., Lassila, L.V.J. & Vallittu, P.K. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin. J Mater Sci: Mater Med 22, 1645–1651 (2011). https://doi.org/10.1007/s10856-011-4352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4352-1

Keywords

Navigation