Skip to main content
Log in

A novel biomimetic analysis system for quantitative characterisation of sclerosing foams used for the treatment of varicose veins

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A novel analysis system for the quantification of sclerosing foam properties under clinically relevant conditions was developed with the purpose of establishing a robust methodology for comparative characterisation of different foam formulations and production strategies. The developed biomimetic-inspired model comprised of 4 or 10 mm inner diameter polytetrafluoroethylene tubing, filled with a blood substitute and fixed to a platform with an adjustable inclination angle. Sclerosing foams were produced by mixing polidocanol with either atmospheric air or 100 % CO2, using a double-syringe system method. Individual foams were injected into the tube, while videos were captured simultaneously. Videos were then transferred to an in-house computational foam analysis system (CFAS) which performed a sequence of semi-automated operations, allowing quantitative characterisation of sclerosing foam dynamic behaviour. Using CFAS, degradation rates of different foams were measured and the effect of gas composition, liquid sclerosant concentration and time delay between foam production and injection were evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pannier F, Rabe E. Endovenous laser therapy and radiofrequency ablation of saphenous varicose veins. J Cardiovasc Surg. 2006;47(1):3.

    CAS  Google Scholar 

  2. Sarin S, Scurr J, Smith P. Assessment of stripping the long saphenous vein in the treatment of primary varicose veins. Br J Surg. 1992;79(9):889–93.

    Article  CAS  Google Scholar 

  3. Rivlin S. The surgical cure of primary varicose veins. Br J Surg. 1975;62(11):913–7.

    Article  CAS  Google Scholar 

  4. Jia X, Mowatt G, Burr J, Cassar K, Cook J, Fraser C. Systematic review of foam sclerotherapy for varicose veins. Br J Surg. 2007;94(8):925–36.

    Article  CAS  Google Scholar 

  5. Hamel-Desnos C, Desnos P, Wollmann JC, Ouvry P, Mako S, Allaert FA. Evaluation of the efficacy of polidocanol in the form of foam compared with liquid form in sclerotherapy of the greater saphenous vein: initial results. Dermatol Surg. 2003;29(12):1170–5.

    Article  Google Scholar 

  6. Cabrera J, Cabrera J Jr, Garcia-Olmedo MA, Redondo P. Treatment of venous malformations with sclerosant in microfoam form. Arch Dermatol. 2003;139(11):1409.

    Article  Google Scholar 

  7. Cavezzi A, Frullini A, Ricci S, Tessari L. Treatment of varicose veins by foam sclerotherapy: two clinical series. Phlebology. 2002;17(1):13–8.

    Google Scholar 

  8. Darke S, Baker S. Ultrasound-guided foam sclerotherapy for the treatment of varicose veins. Br J Surg. 2006;93(8):969–74.

    Article  CAS  Google Scholar 

  9. Frullini A, Cavezzi A. Sclerosing foam in the treatment of varicose veins and telangiectases: history and analysis of safety and complications. Dermatol Surg. 2002;28(1):11–5.

    Article  Google Scholar 

  10. Tessari L, Cavezzi A, Frullini A. Preliminary experience with a new sclerosing foam in the treatment of varicose veins. Dermatol Surg. 2001;27(1):58–60.

    Article  CAS  Google Scholar 

  11. Smith PC. Foam and liquid sclerotherapy for varicose veins. Phlebology. 2009;24(1):62–72.

    Article  Google Scholar 

  12. Myers K, Jolley D, Clough A, Kirwan J. Outcome of ultrasound-guided sclerotherapy for varicose veins: medium-term results assessed by ultrasound surveillance. Eur J Vasc Endovasc Surg. 2007;33(1):116–21.

    Article  CAS  Google Scholar 

  13. Schramm LL. Emulsions, foams, and suspensions: fundamentals and applications. Weinheim: Wiley–VCH; 2005.

    Book  Google Scholar 

  14. Simka M. Principles and technique of foam sclerotherapy and its specific use in the treatment of venous leg ulcers. Int J Low Extrem Wounds. 2011;10(3):138–45.

    Article  Google Scholar 

  15. Watkins M. Deactivation of sodium tetradecyl sulphate injection by blood proteins. Eur J Vasc Endovasc Surg. 2011;41(4):521–5.

    Article  CAS  Google Scholar 

  16. Wollmann J. Sclerosant foams. Phlébologie. 2010;39:208–17.

    Google Scholar 

  17. Höhler R, Cohen-Addad S. Rheology of liquid foam. J Phys Condens Matter. 2005;17:R1041.

    Article  Google Scholar 

  18. Guex J. Complications and side-effects of foam sclerotherapy. Phlebology. 2009;24(6):270–4.

    Article  Google Scholar 

  19. Weaire D, Hutzler S, Cox S, Kern N, Alonso MD, Drenckhan W. The fluid dynamics of foams. J Phys Condens Matter. 2003;15:S65.

    Article  CAS  Google Scholar 

  20. Carugo D, Capretto L, Willis S, Lewis AL, Grey D, Hill M, et al. A microfluidic device for the characterisation of embolisation with polyvinyl alcohol beads through biomimetic bifurcations. Biomed Microdevices. 2012;14(1):153–63.

    Article  CAS  Google Scholar 

  21. Segur JB, Oberstar HE. Viscosity of glycerol and its aqueous solutions. Ind Eng Chem. 1951;43(9):2117–20.

    Article  CAS  Google Scholar 

  22. Pries A, Neuhaus D, Gaehtgens P. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol. 1992;263(6):H1770–8.

    CAS  Google Scholar 

  23. Fung Y. Biodynamics: circulation. New York: Springer; 1984.

    Google Scholar 

  24. Barrett JM, Allen B, Ockelford A, Goldman MP. Microfoam ultrasound-guided sclerotherapy of varicose veins in 100 legs. Dermatol Surg. 2004;30(1):6–12.

    Article  Google Scholar 

  25. Gonzalez RC, Woods RE, Eddins SL. Digital image processing using MATLAB. USA: Prentice Hall Press; 2007.

    Google Scholar 

  26. Yang W, Cao W, Chung TS, Morris J. Applied numerical methods using MATLAB. USA: Wiley Online Library; 2005.

    Book  Google Scholar 

  27. Eckmann DM. Polidocanol for endovenous microfoam sclerosant therapy. Expert Opin Investig Drugs. 2009;18(12):1919–27.

    Article  CAS  Google Scholar 

  28. Morrison N. Foam sclerotherapy, how to improve results and reduce side effects. Phlébologie. 2009;62(1):23–34.

    Google Scholar 

  29. Morrison N, Neuhardt DL, Rogers CR, McEown J, Morrison T, Johnson E, et al. Comparisons of side effects using air and carbon dioxide foam for endovenous chemical ablation. J Vasc Surg. 2008;47(4):830–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunli Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carugo, D., Ankrett, D.N., O’Byrne, V. et al. A novel biomimetic analysis system for quantitative characterisation of sclerosing foams used for the treatment of varicose veins. J Mater Sci: Mater Med 24, 1417–1423 (2013). https://doi.org/10.1007/s10856-013-4913-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4913-6

Keywords

Navigation