Skip to main content

Advertisement

Log in

Schwann cell-seeded scaffold with longitudinally oriented micro-channels for reconstruction of sciatic nerve in rats

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

To provide a more permissive environment for axonal regeneration, Schwann cells (SCs) were introduced into a collagen-chitosan scaffold with longitudinally oriented micro-channels (L-CCH). The SC-seeded scaffold was then used for reconstruction of a 15-mm-long sciatic nerve defect in rats. The axonal regeneration and functional recovery were examined by a combination of walking track analysis, electrophysiological assessment, Fluoro-Gold retrograde tracing, as well as morphometric analyses to both regenerated axons and target muscles. The findings showed that SCs adhered and migrated into the L-CCH scaffold and displayed a longitudinal arrangement in vitro. Axonal regeneration as well as functional recovery was in the similar range between SCs-seeded scaffold and autograft groups, which were superior to those in L-CCH scaffold alone group. These indicate that the SCs-seeded L-CCH scaffold, which resembles the microstructure as well as the permissive environment of native peripheral nerves, holds great promise in nerve regeneration therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Madduri S, Gander B. Schwann cell delivery of neurotrophic factors for peripheral nerve regeneration. J Peripher Nerv Syst. 2010;15:93–103.

    Article  CAS  Google Scholar 

  2. Johnson PJ, Newton P, Hunter DA, Mackinnon SE. Nerve endoneurial microstructure facilitates uniform distribution of regenerative fibers: a post hoc comparison of midgraft nerve fiber densities. J Reconstr Microsurg. 2011;27:83–90.

    Article  Google Scholar 

  3. Mollers S, Heschel I, Damink LH, Schugner F, Deumens R, Muller B, Bozkurt A, Nava JG, Noth J, Brook GA. Cytocompatibility of a novel, longitudinally microstructured collagen scaffold intended for nerve tissue repair. Tissue Eng Part A. 2009;15:461–72.

    Article  Google Scholar 

  4. Bozkurt A, Deumens R, Beckmann C, Olde Damink L, Schugner F, Heschel I, Sellhaus B, Weis J, Jahnen-Dechent W, Brook GA, Pallua N. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials. 2009;30:169–79.

    Article  CAS  Google Scholar 

  5. Pawar K, Mueller R, Caioni M, Prang P, Bogdahn U, Kunz W, Weidner N. Increasing capillary diameter and the incorporation of gelatin enhance axon outgrowth in alginate-based anisotropic hydrogels. Acta Biomater. 2011;7:2826–34.

    Article  CAS  Google Scholar 

  6. Fuhrmann T, Hillen LM, Montzka K, Woltje M, Brook GA. Cell-cell interactions of human neural progenitor-derived astrocytes within a microstructured 3D-scaffold. Biomaterials. 2010;31:7705–15.

    Article  Google Scholar 

  7. Hu X, Huang J, Ye Z, Xia L, Li M, Lv B, Shen X, Luo Z. A novel scaffold with longitudinally oriented microchannels promotes peripheral nerve regeneration. Tissue Eng Part A. 2009;15:3297–308.

    Article  CAS  Google Scholar 

  8. Muir D. The potentiation of peripheral nerve sheaths in regeneration and repair. Exp Neurol. 2010;223:102–11.

    Article  CAS  Google Scholar 

  9. Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A. 2010;93:164–74.

    Google Scholar 

  10. Faweett J, Keynes RJ. Peripheral nerve regeneration. Annu Rev Neurosci. 1990;13:43–60.

    Article  Google Scholar 

  11. Webber C, Zochodne D. The nerve regenerative microenvironment: early behavior and partnership of axons and Schwann cells. Exp Neurol. 2010;223:51–9.

    Article  CAS  Google Scholar 

  12. Chen YY, McDonald D, Cheng C, Magnowski B, Durand J, Zochodne DW. Axon and Schwann cell partnership during nerve regrowth. J Neuropath Exp Neurol. 2005;64:613–22.

    Google Scholar 

  13. Mey J, Schrage K, Wessels I, Vollpracht-Crijns I. Effects of inflammatory cytokines IL-1beta, IL-6, and TNF alpha on the intracellular localization of retinoid receptors in Schwann cells. Glia. 2007;55:152–64.

    Article  Google Scholar 

  14. De Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks. Exp Neurol. 1982;77:634–43.

    Article  Google Scholar 

  15. Hare GM, Evans PJ, Mackinnon SE, Best TJ, Bain JR, Szalai JP, Hunter DA. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg. 1992;89:251–8.

    Article  CAS  Google Scholar 

  16. Suzuki Y, Tanihara M, Ohnishi K, Suzuki K, Endo K, Nishimura Y. Cat peripheral nerve regeneration across 50 mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neurosci Lett. 1999;259:75–8.

    Article  CAS  Google Scholar 

  17. Novikova L, Novikov L, Kellerth JO. Persistent neuronal labeling by retrograde fluorescent tracers: a comparison between fast blue, Fluoro-Gold and various dextran conjugates. J Neurosci Methods. 1997;74:9–15.

    Article  CAS  Google Scholar 

  18. Abercrombie M. Estimation of nuclear population from microtome sections. Anat Rec. 1946;94:239–47.

    Article  CAS  Google Scholar 

  19. Huang J, Lu L, Hu X, Ye Z, Peng Y, Yan X, Geng D, Luo Z. Electrical stimulation accelerates motor functional recovery in the rat model of 15-mm sciatic nerve gap bridged by scaffolds with longitudinally oriented microchannels. Neurorehab Neural Repair. 2010;24:736–45.

    Article  Google Scholar 

  20. Fansa H, Keilhoff G, Wolf G, Schneider W, Gold BG. Tissue engineering of peripheral nerves: a comparison of venous and acellular muscle grafts with cultured schwann cells. Plast Reconstr Surg. 2001;107:495–6.

    Article  Google Scholar 

  21. Brushart TM, Hoffman PN, Royall RM, Murinson BB, Witzel C, Gordon T. Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci. 2002;22:6631–8.

    CAS  Google Scholar 

  22. Bozkurt A, Deumens R, Beckmann C, Olde Damink L, Schügner F, Heschel I, Sellhaus B, Weis J, Jahnen-Dechent W, Brook GA. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials. 2009;30:169–79.

    Article  CAS  Google Scholar 

  23. Aminoff MJ. Electrodiagnosis in clinical neurology. 4th ed. New York: Churchill Livingstone; 1999. p. 257–63.

    Google Scholar 

  24. Rosen JM, Pham HN, Hentz VR. Fascicular tubulization: a comparison of experimental nerve repair techniques in the cat. Ann Plast Surg. 1989;22:467–78.

    Article  CAS  Google Scholar 

  25. Matsumoto K, Ohnishi K, Kiyotani T, Sekine T, Ueda H, Nakamura T, Endo K, Shimizu Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res. 2000;868:315–28.

    Article  CAS  Google Scholar 

  26. Varejao AS, Meek MF, Ferreira AJ, Patricio JA, Cabrita AM. Functional evaluation of peripheral nerve regeneration in the rat: walking track analysis. J Neurosci Methods. 2001;108:1–9.

    Article  CAS  Google Scholar 

  27. Yang Y, Ding F, Wu J, Hu W, Liu W, Liu J, Gu X. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials. 2007;28:5526–35.

    Article  CAS  Google Scholar 

  28. Tang X, Xue C, Wang Y, Ding F, Yang Y, Gu X. Bridging peripheral nerve defects with a tissue engineered nerve graft composed of an in vitro cultured nerve equivalent and a silk fibroin-based scaffold. Biomaterials. 2012;33:3860–7.

    Article  CAS  Google Scholar 

  29. Cui Q, Zhang J, Zhang L, Li R, Liu H. Angelica injection improves functional recovery and motoneuron maintenance with increased expression of brain derived neurotrophic factor and nerve growth factor. Curr Neurovasc Res. 2009;6:117–23.

    Article  CAS  Google Scholar 

  30. Nie X, Zhang YJ, Tian WD, Jiang M, Dong R, Chen JW, Jin Y. Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. Int J Oral Max Surg. 2007;36:32–8.

    Article  CAS  Google Scholar 

  31. Guntinas-Lichius O, Irintchev A, Streppel M, Lenzen M, Grosheva M, Wewetzer K, Neiss WF, Angelov DN. Factors limiting motor recovery after facial nerve transection in the rat: combined structural and functional analyses. Eur J Neurosci. 2005;21:391–402.

    Article  Google Scholar 

  32. Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci. 2007;30:209–33.

    Article  Google Scholar 

  33. Huang J, Ye Z, Hu X, Lu L, Luo Z. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia. 2010;58:622–31.

    Google Scholar 

  34. Zhang Y, Luo H, Zhang Z, Lu Y, Huang X, Yang L, Xu J, Yang W, Fan X, Du B. A nerve graft constructed with xenogeneic acellular nerve matrix and autologous adipose-derived mesenchymal stem cells. Biomaterials. 2010;31:5312–24.

    Article  CAS  Google Scholar 

  35. Fansa H, Dodic T, Wolf G, Schneider W, Keilhoff G. Tissue engineering of peripheral nerves: epineurial grafts with application of cultured Schwann cells. Microsurgery. 2003;23:72–7.

    Article  CAS  Google Scholar 

  36. Koshimune M, Takamatsu K, Nakatsuka H, Inui K, Yamano Y, Ikada Y. Creating bioabsorbable Schwann cell coated conduits through tissue engineering. Biomed Mater Eng. 2003;13:223–9.

    CAS  Google Scholar 

  37. Wang W, Itoh S, Konno K, Kikkawa T, Ichinose S, Sakai K, Ohkuma T, Watabe K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J Biomed Mater Res A. 2009;91A:994–1005.

    Article  CAS  Google Scholar 

  38. Goto E, Mukozawa M, Mori H, Hara M. A rolled sheet of collagen gel with cultured Schwann cells: model of nerve conduit to enhance neurite growth. J Biosci Bioeng. 2010;109:512–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 30770571 and No. 30973052) and the National Hi-Tech Research and Development Program of China (863) (Grant No. 2002AA216101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Hui Huang or Zhuo-Jing Luo.

Additional information

Yong-Guang Zhang, Qing-Song Sheng, and Feng-Yu Qi contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YG., Sheng, QS., Qi, FY. et al. Schwann cell-seeded scaffold with longitudinally oriented micro-channels for reconstruction of sciatic nerve in rats. J Mater Sci: Mater Med 24, 1767–1780 (2013). https://doi.org/10.1007/s10856-013-4917-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-013-4917-2

Keywords

Navigation