Skip to main content

Advertisement

Log in

A mitochondrial bioenergetic basis of depression

  • Mini-review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Major depressive disorder (MDD) is an important public health problem affecting 350 million people worldwide. After decades of study, the pathophysiology of MDD remains elusive, resulting in treatments that are only 30–60 % effective. This review summarizes the emerging evidence that implicates impaired mitochondrial bioenergetics as a basis for MDD. It is suggested that impaired mitochondrial bioenergetic function contributes to the pathophysiology of MDD via several potential pathways including: genetics/genomics, inflammation, oxidative stress, and alterations in neuroplasticity. A discussion of mitochondrial bioenergetic pathways that lead to MDD is provided. Evidence is reviewed regarding the mito-toxic or mito-protective impact of various antidepressant medications currently in use. Opportunities for further research on novel therapeutic approaches, including mitochondrial modulators, as stand-alone or adjunct therapy for reducing depression are suggested. In conclusion, while there is substantial evidence linking mitochondrial bioenergetics and MDD, there are currently no clear mitochondrial phenotypes or biomarkers to use as guides in targeting therapies beyond individuals with MDD and known mitochondrial disorders toward the general population of individuals with MDD. Further study is needed to develop these phenotypes and biomarkers, to identify therapeutic targets, and to test therapies aimed at improving mitochondrial function in individuals whose MDD is to some extent symptomatic of impaired mitochondrial bioenergetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboul-Fotouh S (2013a) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 104(Journal Article):105–112. doi:10.1016/j.pbb.2012.12.027

    CAS  Google Scholar 

  • Aboul-Fotouh S (2013b) Chronic treatment with coenzyme Q10 reverses restraint stress-induced anhedonia and enhances brain mitochondrial respiratory chain and creatine kinase activities in rats. Behav Pharmacol 24(7):552–560

    CAS  Google Scholar 

  • Aguiar AS Jr, Stragier E, da Luz Scheffer D, Remor AP, Oliveira PA, Prediger RD et al (2014) Effects of exercise on mitochondrial function, neuroplasticity and anxio-depressive behavior of mice. Neuroscience 271(Journal Article):56–63. doi:10.1016/j.neuroscience.2014.04.027

    CAS  Google Scholar 

  • Allen PJ (2012) Creatine metabolism and psychiatric disorders: does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36(5):1442–1462. doi:10.1016/j.neubiorev.2012.03.005

    CAS  Google Scholar 

  • Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y et al (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 58(2):85–96. doi:10.1016/j.biopsych.2005.03.031

    CAS  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Arlington

    Google Scholar 

  • Ames A 3rd (2000) CNS energy metabolism as related to function. Brain Res Brain Res Rev 34(1–2):42–68

    CAS  Google Scholar 

  • Andreazza AC, Shao L, Wang JF, Young LT (2010) Mitochondrial complex I activity and oxidative damage to mitochondrial proteins in the prefrontal cortex of patients with bipolar disorder. Arch Gen Psychiatry 67(4):360–368. doi:10.1001/archgenpsychiatry.2010.22

    CAS  Google Scholar 

  • Angelini C, Bello L, Spinazzi M, Ferrati C (2009) Mitochondrial disorders of the nuclear genome. Acta Myol 28(1):16–23

    CAS  Google Scholar 

  • Anglin RE, Mazurek MF, Tarnopolsky MA, Rosebush PI (2012a) The mitochondrial genome and psychiatric illness. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 159B(7):749–759. doi:10.1002/ajmg.b.32086

    Google Scholar 

  • Anglin RE, Garside SL, Tarnopolsky MA, Mazurek MF, Rosebush PI (2012b) The psychiatric manifestations of mitochondrial disorders: a case and review of the literature. J Clin Psychiatr 73(4):506–512. doi:10.4088/JCP.11r07237

    Google Scholar 

  • Beasley CL, Pennington K, Behan A, Wait R, Dunn MJ, Cotter D (2006) Proteomic analysis of the anterior cingulate cortex in the major psychiatric disorders: evidence for disease-associated changes. Proteomics 6(11):3414–3425. doi:10.1002/pmic.200500069

    CAS  Google Scholar 

  • Behr GA, Moreira JC, Frey BN (2012a) Preclinical and clinical evidence of antioxidant effects of antidepressant agents: implications for the pathophysiology of major depressive disorder. Oxidative Med Cell Longev 2012:609421. doi:10.1155/2012/609421

    Google Scholar 

  • Behr GA, Moreira JC, & Frey BN (2012) Preclinical and clinical evidence of antioxidant effects of antidepressant agents: Implications for the pathophysiology of major depressive disorder. Oxidative Medicine and Cellular Longevity, 2012(Journal Article), 609421, doi: 10.1155/2012/609421

  • Ben-Shachar D, Karry R (2008) Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS ONE 3(11):e3676. doi:10.1371/journal.pone.0003676

    Google Scholar 

  • Bergemann ER, Boles RG (2010) Maternal inheritance in recurrent early-onset depression. Psychiatr Genet 20(1):31–34. doi:10.1097/YPG.0b013e3283351153

    Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783. doi:10.1101/gad.1787609

    CAS  Google Scholar 

  • Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I et al (2008) N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry 64(6):468–475

    CAS  Google Scholar 

  • Billups B, Forsythe ID (2002) Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J Neurosci 22(14):5840–5847

    CAS  Google Scholar 

  • Boles RG, Burnett BB, Gleditsch K, Wong S, Guedalia A, Kaariainen A et al (2005) A high predisposition to depression and anxiety in mothers and other matrilineal relatives of children with presumed maternally inherited mitochondrial disorders. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatricr Genet 137B(1):20–24. doi:10.1002/ajmg.b.30199

    Google Scholar 

  • Bowling AC, Beal MF (1995) Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci 56(14):1151–1171

    CAS  Google Scholar 

  • Brebner K, Hayley S, Zacharko R, Merali Z, Anisman H (2000) Synergistic effects of interleukin-1[beta], interleukin-6, and tumor necrosis factor-[alpha]: central monoamine, corticosterone, and behavioral variations. Neuropsychopharmacology 22(6):566–580

    CAS  Google Scholar 

  • Burnett BB, Gardner A, Boles RG (2005) Mitochondrial inheritance in depression, dysmotility and migraine? J Affect Disord 88(1):109–116

    CAS  Google Scholar 

  • Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB et al (2001) Neurobehavioral effects of interferon-α in cancer patients: Phenomenology and paroxetine responsiveness of symptom dimensions

  • Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB et al (2002) Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology : Off Publ Am Coll Neuropsychopharmacology 26(5):643–652

    CAS  Google Scholar 

  • Carlson PJ, Singh JB, Zarate CA Jr, Drevets WC, Manji HK (2006) Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx 3(1):22–41. doi:10.1016/j.nurx.2005.12.009

    CAS  Google Scholar 

  • Chen HY, Cheng IC, Pan YJ, Chiu YL, Hsu SP, Pai MF et al (2011) Cognitive-behavioral therapy for sleep disturbance decreases inflammatory cytokines and oxidative stress in hemodialysis patients. Kidney Int 80(4):415–422. doi:10.1038/ki.2011.151

    CAS  Google Scholar 

  • Chen F, Wegener G, Madsen TM, Nyengaard JR (2013) Mitochondrial plasticity of the hippocampus in a genetic rat model of depression after antidepressant treatment. Synapse (New York, NY) 67(3):127–134. doi:10.1002/syn.21622

    CAS  Google Scholar 

  • Cheng A, Hou Y, & Mattson MP (2010) Mitochondria and neuroplasticity. ASN neuro, 2(5), AN20100019

  • Cui H, Kong Y, Zhang H (2012) Oxidative stress, mitochondrial dysfunction, and aging. J Signal Transduct 2012:646354. doi:10.1155/2012/646354

    Google Scholar 

  • Danielson SR, Carelli V, Tan G, Martinuzzi A, Schapira AH, Savontaus ML et al (2005) Isolation of transcriptomal changes attributable to LHON mutations and the cybridization process. Brain 128(Pt 5):1026–1037. doi:10.1093/brain/awh447

    Google Scholar 

  • da-Silva WS, Gomez-Puyou A, de Gomez-Puyou MT, Moreno-Sanchez R, De Felice FG, de Meis L et al (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 279(38):39846–39855. doi:10.1074/jbc.M403835200

    CAS  Google Scholar 

  • Dechent P, Pouwels PJ, Wilken B, Hanefeld F, Frahm J (1999) Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am J Physiol 277(3 Pt 2):R698–R704

    CAS  Google Scholar 

  • Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK et al (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457. doi:10.1016/j.biopsych.2009.09.033

    CAS  Google Scholar 

  • Fattal O, Link J, Quinn K, Cohen BH, Franco K (2007) Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr 12(6):429–438

    Google Scholar 

  • Fava M, Targum SD, Nierenberg AA, Bleicher LS, Carter TA, Wedel PC et al (2012). An exploratory study of combination buspirone and melatonin SR in major depressive disorder (MDD): a possible role for neurogenesis in drug discovery. J Psychiatr Res 46(12):1553–1563, doi: 10.1016/j.jpsychires.2012.08.013

  • Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322(1–2):254–262. doi:10.1016/j.jns.2012.05.030

    CAS  Google Scholar 

  • Finsterer J (2001) Cerebrospinal-fluid lactate in adult mitochondriopathy with and without encephalopathy. Acta Med Austriaca 28(5):152–155

    CAS  Google Scholar 

  • Fišar Z, Hroudová J, Raboch J (2010) Inhibition of monoamine oxidase activity by antidepressants and mood stabilizers. Neuroendocrinol Lett 31(5):645

    Google Scholar 

  • Forester BP, Harper DG, Jensen JE, Ravichandran C, Jordan B, Renshaw PF et al (2009) 31Phosphorus magnetic resonance spectroscopy study of tissue specific changes in high energy phosphates before and after sertraline treatment of geriatric depression. Int J Geriatr Psychiatr 24(8):788–797. doi:10.1002/gps.2230

    Google Scholar 

  • Gardner A, & Boles RG (2008) Symptoms of somatization as a rapid screening tool for mitochondrial dysfunction in depression. BioPsychoSocial Medicine, 2(Journal Article)

  • Gardner A, Boles RG (2011) Beyond the serotonin hypothesis: mitochondria, inflammation and neurodegeneration in major depression and affective spectrum disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):730–743. doi:10.1016/j.pnpbp.2010.07.030

    CAS  Google Scholar 

  • Gardner A, Johansson A, Wibom R, Nennesmo I, von Döbeln U, Hagenfeldt L et al (2003) Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 76(1–3):55–68

    CAS  Google Scholar 

  • Garzya G, Corallo D, Fiore A, Lecciso G, Petrelli G, Zotti C (1990) Evaluation of the effects of L-acetylcarnitine on senile patients suffering from depression. Drugs Exp Clin Res 16(2):101–106

    CAS  Google Scholar 

  • Gero D, Szoleczky P, Suzuki K, Modis K, Olah G, Coletta C et al (2013) Cell-based screening identifies paroxetine as an inhibitor of diabetic endothelial dysfunction. Diabetes 62(3):953–964, doi: 910.2337/db2312-0789. Epub 2012 Dec 2337

    CAS  Google Scholar 

  • Gong Y, Chai Y, Ding JH, Sun XL, Hu G (2011) Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain. Neurosci Lett 488(1):76–80. doi:10.1016/j.neulet.2010.11.006

    CAS  Google Scholar 

  • Gonzalez-Gronow M, Cuchacovich M, Francos R, Cuchacovich S, Fernandez Mdel P, Blanco A et al (2010) Antibodies against the voltage-dependent anion channel (VDAC) and its protective ligand hexokinase-I in children with autism. J Neuroimmunol 227(1–2):153–161. doi:10.1016/j.jneuroim.2010.06.001

    CAS  Google Scholar 

  • Hasler G (2010) Pathophysiology of depression: do we have any solid eveidence of interest to clinicians? World Psychiatry 9(3):155–161. doi:10.1002/j.2051-5545.2010.tb00298.x

    Google Scholar 

  • He Y, Tang J, Li Z, Li H, Liao Y, Tang Y et al (2014) Leukocyte mitochondrial DNA copy number in blood is not associated with major depressive disorder in young adults. PLoS ONE 9(5):e96869. doi:10.1371/journal.pone.0096869

    Google Scholar 

  • Hestad KA, Tønseth S, Støen CD, Ueland T, Aukrust P (2003) Raised plasma levels of tumor necrosis factor [alpha] in patients with depression: normalization during electroconvulsive therapy. J ECT 19(4):183–188

    Google Scholar 

  • Hroudová J, Fišar Z, Kitzlerová E, Zvěřová M, Raboch J (2013) Mitochondrial respiration in blood platelets of depressive patients. Mitochondrion 13(6):795–800. doi:10.1016/j.mito.2013.05.005

    Google Scholar 

  • Inczedy-Farkas G, Remenyi V, Gal A, Varga Z, Balla P, Udvardy-Meszaros A et al (2012) Psychiatric symptoms of patients with primary mitochondrial DNA disorders. Behav Brain Funct 8:9. doi:10.1186/1744-9081-8-9

    CAS  Google Scholar 

  • Iosifescu DV, Bolo NR, Nierenberg AA, Jensen JE, Fava M, Renshaw PF (2008) Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry 63(12):1127–1134. doi:10.1016/j.biopsych.2007.11.020

    CAS  Google Scholar 

  • Jones LL, McDonald DA, Borum PR (2010) Acylcarnitines: role in brain. Prog Lipid Res 49(1):61–75. doi:10.1016/j.plipres.2009.08.004

    CAS  Google Scholar 

  • Jose da Rocha A, Tulio Braga F, Carlos Martins Maia A Jr, Jorge da Silva C, Toyama C, Pereira Pinto Gama H et al (2008) Lactate detection by MRS in mitochondrial encephalopathy: optimization of technical parameters. J Neuroimaging 18(1):1–8. doi:10.1111/j.1552-6569.2007.00205.x

    Google Scholar 

  • Karabatsiakis A, Böck C, Salinas-Manrique J, Kolassa S, Calzia E, Dietrich DE et al (2014) Mitochondrial respiration in peripheral blood mononuclearcells correlates with depressive subsymptoms and severity of major depression. Transl Psychiatr 4:e397. doi:10.1038/tp.2014.44

    CAS  Google Scholar 

  • Kaster MP, Gadotti VM, Calixto JB, Santos ARS, Rodrigues ALS (2012) Depressive-like behavior induced by tumor necrosis factor-α in mice. Neuropharmacology 62(1):419–426. doi:10.1016/j.neuropharm.2011.08.018

    CAS  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatr 156(6):837–841

    CAS  Google Scholar 

  • Kendler KS, Gatz M, Gardner CO, Pedersen NL (2006) A Swedish national twin study of lifetime major depression. Am J Psychiatry 163(1):109–114

    Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR et al (2003) The epidemiology of major depressive disorder: results from the national comorbidity survey replication (NCS-R). JAMA: J Am Med Assoc 289(23):3095–3105

    Google Scholar 

  • Kessler RC, Chiu WT, Demler O, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry 62(6):617–627

    Google Scholar 

  • Kim MY, Lee JW, Kang HC, Kim E, Lee DC (2011) Leukocyte mitochondrial DNA (mtDNA) content is associated with depression in old women. Arch Gerontol Geriatr 53(2):e218–e221. doi:10.1016/j.archger.2010.11.019

    CAS  Google Scholar 

  • Knapp LT, Klann E (2002) Role of reactive oxygen species in hippocampal long-term potentiation: contributory or inhibitory? J Neurosci Res 70(1):1–7. doi:10.1002/jnr.10371

    CAS  Google Scholar 

  • Koene S, Kozicz TL, Rodenburg RJ, Verhaak CM, de Vries MC, Wortmann S et al (2009) Major depression in adolescent children consecutively diagnosed with mitochondrial disorder. J Affect Disord 114(1–3):327–332. doi:10.1016/j.jad.2008.06.023

    CAS  Google Scholar 

  • Kondo DG, Sung YH, Hellem TL, Fiedler KK, Shi X, Jeong EK et al (2011) Open-label adjunctive creatine for female adolescents with SSRI-resistant major depressive disorder: a 31-phosphorus magnetic resonance spectroscopy study. J Affect Disord 135(1–3):354–361. doi:10.1016/j.jad.2011.07.010

    Google Scholar 

  • Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX (2009) Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 15(1–2):43–50. doi:10.2119/molmed.2008.00117

    CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147. doi:10.1007/7854_2010_108

    Google Scholar 

  • Kumar P, Kalonia H, Kumar A (2010) Nitric oxide mechanism in the protective effect of antidepressants against 3-nitropropionic acid-induced cognitive deficit, glutathione and mitochondrial alterations in animal model of Huntington’s disease. Behav Pharmacol 21(3):217–230, 210.1097/FBP.1090b1013e32833a32835bf32834

    CAS  Google Scholar 

  • Leon J, Acuna-Castroviejo D, Sainz RM, Mayo JC, Tan DX, Reiter RJ (2004) Melatonin and mitochondrial function. Life Sci 75(7):765–790. doi:10.1016/j.lfs.2004.03.003

    CAS  Google Scholar 

  • Leonard BE (2014) Impact of inflammation on neurotransmitter changes in major depression: an insight into the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 48(Journal Article):261–267

    CAS  Google Scholar 

  • Leonard B, Maes M (2012) Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev 36(2):764–785. doi:10.1016/j.neubiorev.2011.12.005

    CAS  Google Scholar 

  • Lépine J-P, Briley M (2011) The increasing burden of depression. Neuropsychiatr Dis Treat 7(Suppl 1):3–7. doi:10.2147/ndt.s19617

    Google Scholar 

  • Li Z, Okamoto K-I, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119(6):873–887

    CAS  Google Scholar 

  • Li Y, Couch L, Higuchi M, Fang J-L, Guo L (2012) Mitochondrial dysfunction induced by sertraline, an antidepressant agent. Toxicol Sci. doi:10.1093/toxsci/kfs100

    Google Scholar 

  • Liu W, Zhou C (2012) Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning. Psychoneuroendocrinology 37(7):1057–1070. doi:10.1016/j.psyneuen.2011.12.003

    CAS  Google Scholar 

  • Luca M, Luca A, Calandra C (2013) Accelerated aging in major depression: the role of nitro-oxidative stress. Oxidative Med Cell Longev 2013:230797. doi:10.1155/2013/230797

    Google Scholar 

  • Lucca G, Comim CM, Valvassori SS, Reus GZ, Vuolo F, Petronilho F et al (2009) Increased oxidative stress in submitochondrial particles into the brain of rats submitted to the chronic mild stress paradigm. J Psychiatr Res 43(9):864–869. doi:10.1016/j.jpsychires.2008.11.002

    Google Scholar 

  • Lyoo IK, Kong SW, Sung SM, Hirashima F, Parow A, Hennen J et al (2003) Multinuclear magnetic resonance spectroscopy of high-energy phosphate metabolites in human brain following oral supplementation of creatine-monohydrate. Psychiatry Res 123(2):87–100

    CAS  Google Scholar 

  • Lyoo IK, Yoon S, Kim TS, Hwang J, Kim JE, Won W et al (2012) A randomized, double-blind placebo-controlled trial of oral creatine monohydrate augmentation for enhanced response to a selective serotonin reuptake inhibitor in women with major depressive disorder. Am J Psychiatry 169(9):937–945. doi:10.1176/appi.ajp.2012.12010009

    Google Scholar 

  • Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuro-Psychopharmacol Biol Psychiatry 35(3):676–692. doi:10.1016/j.pnpbp.2010.05.004

    CAS  Google Scholar 

  • Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M et al (2012) Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci 13(5):293–307. doi:10.1038/nrn3229

    CAS  Google Scholar 

  • Markham A, Cameron I, Franklin P, Spedding M (2004) BDNF increases rat brain mitochondrial respiratory coupling at complex I, but not complex II. Eur J Neurosci 20(5):1189–1196. doi:10.1111/j.1460-9568.2004.03578.x

    CAS  Google Scholar 

  • Matsushita M, Kumano-Go T, Suganuma N, Adachi H, Yamanura S, Morishima H et al (2010) Do depressive symptoms correlate with oxidative stress in a sample of healthy college students? Eur J Psychiatr 24(2):63–69

    Google Scholar 

  • Mattson MP, Gleichmann M, Cheng A (2008) Mitochondria in neuroplasticity and neurological disorders. Neuron 60(5):748–766. doi:10.1016/j.neuron.2008.10.010

    CAS  Google Scholar 

  • McFarquhar M, Elliott R, McKie S, Thomas E, Downey D, Mekli K et al (2014) TOMM40 rs2075650 may represent a new candidate gene for vulnerability to major depressive disorder. Neuropsychopharmacology 39(7):1743–1753

    CAS  Google Scholar 

  • Merikangas KR, He JP, Brody D, Fisher PW, Bourdon K, Koretz DS (2010) Prevalence and treatment of mental disorders among US children in the 2001–2004 NHANES. Pediatrics 125(1):75–81. doi:10.1542/peds.2008-2598

    Google Scholar 

  • Michel TM, Frangou S, Thiemeyer D, Camara S, Jecel J, Nara K et al (2007) Evidence for oxidative stress in the frontal cortex in patients with recurrent depressive disorder–a postmortem study. Psychiatry Res 151(1–2):145–150. doi:10.1016/j.psychres.2006.04.013

    CAS  Google Scholar 

  • Mill J, Petronis A (2007) Molecular studies of major depressive disorder: the epigenetic perspective. Mol Psychiatry 12(9):799–814

    CAS  Google Scholar 

  • Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741

    CAS  Google Scholar 

  • Moore CM, Christensen JD, Lafer B, Fava M, Renshaw PF (1997) Lower levels of nucleoside triphosphate in the basal ganglia of depressed subjects: a phosphorous-31 magnetic resonance spectroscopy study. Am J Psychiatry 154(1):116–118

    CAS  Google Scholar 

  • Morava E, Kozicz T (2013) Mitochondria and the economy of stress (mal)adaptation. Neurosci Biobehav Rev 37(4):668–680. doi:10.1016/j.neubiorev.2013.02.005

    CAS  Google Scholar 

  • Morava E, Gardeitchik T, Kozicz T, de Boer L, Koene S, de Vries MC et al (2010) Depressive behaviour in children diagnosed with a mitochondrial disorder. Mitochondrion 10(5):528–533. doi:10.1016/j.mito.2010.05.011

    CAS  Google Scholar 

  • Moreno J, Gaspar E, López-Bello G, Juárez E, Alcázar-Leyva S, González-Trujano E et al (2013) Increase in nitric oxide levels and mitochondrial membrane potential in platelets of untreated patients with major depression. Psychiatry Res 209(3):447–452. doi:10.1016/j.psychres.2012.12.024

    CAS  Google Scholar 

  • Munakata K, Iwamoto K, Bundo M, Kato T (2005) Mitochondrial DNA 3243A>G mutation and increased expression of LARS2 gene in the brains of patients with bipolar disorder and schizophrenia. Biol Psychiatry 57(5):525–532

    CAS  Google Scholar 

  • Munakata K, Fujii K, Nanko S, Kunugi H, Kato T (2007) Sequence and functional analyses of mtDNA in a maternally inherited family with bipolar disorder and depression. Mutat Res 617(1–2):119–124

    CAS  Google Scholar 

  • Murrough JW, Mao X, Collins KA, Kelly C, Andrade G, Nestadt P et al (2010) Increased ventricular lactate in chronic fatigue syndrome measured by 1H MRS imaging at 3.0 T. II: comparison with major depressive disorder. NMR Biomed 23(6):643–650. doi:10.1002/nbm.1512

    CAS  Google Scholar 

  • Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS et al (2001) Paroxetine for the prevention of depression induced by high-dose interferon alfa. New Engl J Med 344(13):961–966

    CAS  Google Scholar 

  • Nahon E, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2005) Fluoxetine (Prozac) interaction with the mitochondrial voltage-dependent anion channel and protection against apoptotic cell death. FEBS Lett 579(22):5105–5110. doi:10.1016/j.febslet.2005.08.020

    CAS  Google Scholar 

  • Nemets B, Levine J (2013) A pilot dose-finding clinical trial of creatine monohydrate augmentation to SSRIs/SNRIs/NASA antidepressant treatment in major depression. Int Clin Psychopharmacol 28(3):127–133. doi:10.1097/YIC.0b013e32835ff20f

    Google Scholar 

  • Nierenberg AA, Kansky C, Brennan BP, Shelton RC, Perlis R, Iosifescu DV (2013) Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry 47(1):26–42

    Google Scholar 

  • Normann C, Schmitz D, Fürmaier A, Döing C, Bach M (2007) Long-term plasticity of visually evoked potentials in humans is altered in major depression. Biol Psychiatry 62(5):373–380. doi:10.1016/j.biopsych.2006.10.006

    Google Scholar 

  • Pettegrew JW, Levine J, Gershon S, Stanley JA, Servan-Schreiber D, Panchalingam K et al (2002) 31P-MRS study of acetyl-L-carnitine treatment in geriatric depression: preliminary results. Bipolar Disord 4(1):61–66

    CAS  Google Scholar 

  • Player MJ, Taylor JL, Weickert CS, Alonzo A, Sachdev P, Martin D et al (2013) Neuroplasticity in depressed individuals compared with healthy controls. Neuropsychopharmacology 38(11):2101–2108

    Google Scholar 

  • Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31

    CAS  Google Scholar 

  • Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G (2012) Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling. J Psychiatr Res 46(1):95–104

    CAS  Google Scholar 

  • Reichenberg A, Gorman JM, Dieterich DT (2005) Interferon-induced depression and cognitive impairment in hepatitis C virus patients: a 72 week prospective study. AIDS 19:S174–S178

    CAS  Google Scholar 

  • Renshaw PF, Parow AM, Hirashima F, Ke Y, Moore CM, Frederick Bde B et al (2001) Multinuclear magnetic resonance spectroscopy studies of brain purines in major depression. Am J Psychiatry 158(12):2048–2055

    CAS  Google Scholar 

  • Rezin GT, Cardoso MR, Goncalves CL, Scaini G, Fraga DB, Riegel RE et al (2008) Inhibition of mitochondrial respiratory chain in brain of rats subjected to an experimental model of depression. Neurochem Int 53(6–8):395–400. doi:10.1016/j.neuint.2008.09.012

    CAS  Google Scholar 

  • Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34(6):1021–1029. doi:10.1007/s11064-008-9865-8

    CAS  Google Scholar 

  • Roitman S, Green T, Osher Y, Karni N, Levine J (2007) Creatine monohydrate in resistant depression: a preliminary study. Bipolar Disord 9(7):754–758. doi:10.1111/j.1399-5618.2007.00532.x

    CAS  Google Scholar 

  • Rollins B, Martin MV, Sequeira PA, Moon EA, Morgan LZ, Watson SJ et al (2009) Mitochondrial variants in schizophrenia, bipolar disorder, and major depressive disorder. PLoS ONE 4(3):e4913. doi:10.1371/journal.pone.0004913

    Google Scholar 

  • Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE et al (2012) Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatr 2:e134. doi:10.1038/tp.2012.61

    CAS  Google Scholar 

  • Sabunciyan S, Kirches E, Krause G, Bogerts B, Mawrin C, Llenos I et al (2007a) Quantification of total mitochondrial DNA and mitochondrial common deletion in the frontal cortex of patients with schizophrenia and bipolar disorder. J Neural Transm 114(5):665–674

    CAS  Google Scholar 

  • Sabunciyan S, Kirches E, Krause G, Bogerts B, Mawrin C, Llenos IC et al (2007b) Quantification of total mitochondrial DNA and mitochondrial common deletion in the frontal cortex of patients with schizophrenia and bipolar disorder. J Neural Transm 114(5):665–674. doi:10.1007/s00702-006-0581-8

    CAS  Google Scholar 

  • Saraiva LM, Seixas da Silva GS, Galina A, da-Silva WS, Klein WL, Ferreira ST et al (2010) Amyloid-beta triggers the release of neuronal hexokinase 1 from mitochondria. PLoS One 5(12):e15230. doi:10.1371/journal.pone.0015230

    CAS  Google Scholar 

  • Savitz J, Drevets WC (2009) Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 33(5):699–771

    Google Scholar 

  • Scaini G, Maggi DD, De-Nes BT, Goncalves CL, Ferreira GK, Teodorak BP et al (2011) Activity of mitochondrial respiratory chain is increased by chronic administration of antidepressants. Acta Neuropsychiatrica 23(3):112–118

    Google Scholar 

  • Schildkraut JJ, Kety SS (1967) Biogenic amines and emotion. Science (New York, NY) 156(3771):21–37

    CAS  Google Scholar 

  • Schindler A, Foley E (2013) Hexokinase 1 blocks apoptotic signals at the mitochondria. Cell Signal 25(12):2685–2692. doi:10.1016/j.cellsig.2013.08.035

    CAS  Google Scholar 

  • Serafini G (2012) Neuroplasticity and major depression, the role of modern antidepressant drugs. World J Psychiatr 2(3):49–57. doi:10.5498/wjp.v2.i3.49

    Google Scholar 

  • Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM et al (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40(4):281–295. doi:10.1080/07853890801923753

    CAS  Google Scholar 

  • Shoshan-Barmatz V, Zakar M, Rosenthal K, Abu-Hamad S (2009) Key regions of VDAC1 functioning in apoptosis induction and regulation by hexokinase. Biochim Biophys Acta 1787(5):421–430. doi:10.1016/j.bbabio.2008.11.009

    CAS  Google Scholar 

  • Shungu DC, Weiduschat N, Murrough JW, Mao X, Pillemer S, Dyke JP et al (2012) Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed 25(9):1073–1087. doi:10.1002/nbm.2772

    CAS  Google Scholar 

  • Sjövall F, Ehinger JKH, Marelsson SE, Morota S, Åsander Frostner E, Uchino H et al (2013) Mitochondrial respiration in human viable platelets—methodology and influence of gender, age and storage. Mitochondrion 13(1):7–14. doi:10.1016/j.mito.2012.11.001

    Google Scholar 

  • Smits BW, Fermont J, Delnooz CC, Kalkman JS, Bleijenberg G, van Engelen BG (2011) Disease impact in chronic progressive external ophthalmoplegia: more than meets the eye. Neuromuscul Disord 21(4):272–278. doi:10.1016/j.nmd.2010.12.008

    Google Scholar 

  • Song C, Halbreich U, Han C, Leonard BE, Luo H (2009) Imbalance between Pro- and Anti-inflammatory cytokines, and between Th1 and Th2 cytokines in depressed patients: the effect of electroacupuncture or fluoxetine treatment. Pharmacopsychiatry 42(05):182–188. doi:10.1055/s-0029-1202263

    CAS  Google Scholar 

  • Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78(6):539–552. doi:10.1016/j.bcp.2009.04.029

    CAS  Google Scholar 

  • Steptoe A, Hamer M, Chida Y (2007) The effects of acute psychological stress on circulating inflammatory factors in humans: a review and meta-analysis. Brain Behav Immun 21(7):901–912. doi:10.1016/j.bbi.2007.03.011

    CAS  Google Scholar 

  • Stork C, Renshaw PF (2005) Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 10(10):900–919. doi:10.1038/sj.mp.4001711

    CAS  Google Scholar 

  • Torrell H, Montana E, Abasolo N, Roig B, Gaviria AM, Vilella E et al (2013) Mitochondrial DNA (mtDNA) in brain samples from patients with major psychiatric disorders: gene expression profiles, mtDNA content and presence of the mtDNA common deletion. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatricr Genet 162B(2):213–223. doi:10.1002/ajmg.b.32134

    Google Scholar 

  • Uddin M, Koenen KC, Aiello AE, Wildman DE, de los Santos R, Galea S (2011) Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol Med 41(05):997–1007. doi:10.1017/S0033291710001674

    CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84

    CAS  Google Scholar 

  • Vawter MP, Tomita H, Meng F, Bolstad B, Li J, Evans S et al (2006) Mitochondrial-related gene expression changes are sensitive to agonal-pH state: Implications for brain disorders. Mol Psychiatry 11(7):615, 663–679

    CAS  Google Scholar 

  • Volz HP, Rzanny R, Riehemann S, May S, Hegewald H, Preussler B et al (1998) 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiatry Clin Neurosci 248(6):289–295

    CAS  Google Scholar 

  • Wallace DC (2013) A mitochondrial bioenergetic etiology of disease. J Clin Invest 123(4):1405–1412. doi:10.1172/jci61398

    CAS  Google Scholar 

  • Wallace DC, Fan W (2010) Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10(1):12–31. doi:10.1016/j.mito.2009.09.006

    CAS  Google Scholar 

  • Wang PS, Lane M, Olfson M, Pincus HA, Wells KB, Kessler RC (2005) Twelve-month use of mental health services in the United States: results from the national comorbidity survey replication. Arch Gen Psychiatry 62(6):629–640

    Google Scholar 

  • Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Pae CU (2014) A review of current evidence for acetyl-l-carnitine in the treatment of depression. J Psychiatr Res 53:30–37. doi:10.1016/j.jpsychires.2014.02.005

    Google Scholar 

  • Wiener C, Rassier GT, Kaster MP, Jansen K, Pinheiro RT, Klamt F et al (2014) Gender-based differences in oxidative stress parameters do not underlie the differences in mood disorders susceptibility between sexes. Eur Psychiatr 29(1):58–63

    CAS  Google Scholar 

  • Willner P (2005) Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52(2):90–110. doi:10.1159/000087097

    CAS  Google Scholar 

  • World Health Organization (2012). Depression Fact Sheet No 369. http://www.who.int/mediacentre/factsheets/fs369/en/. Accessed 16 June 2014.

  • Xu Y, Wang C, Klabnik JJ, O’Donnell JM (2014) Novel therapeutic targets in depression and anxiety: antioxidants as a candidate treatment. Curr Neuropharmacol 12(2):108–119

    CAS  Google Scholar 

  • Zhang WH, Wang H, Wang X, Narayanan MV, Stavrovskaya IG, Kristal BS et al (2008) Nortriptyline protects mitochondria and reduces cerebral ischemia/hypoxia injury. Stroke 39(2):455–462, doi: 410.1161/STROKEAHA.1107.496810. Epub 492008 Jan 496813

    Google Scholar 

  • Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W et al (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. [10.1038/nature08780]. Nature, 464(7285), 104–107, doi:http://www.nature.com/nature/journal/v464/n7285/suppinfo/nature08780_S1.html

  • Zhang C, Wu Z, Hong W, Wang Z, Peng D, Chen J et al (2014) Influence of BCL2 gene in major depression susceptibility and antidepressant treatment outcome. J Affect Disord 155:288–294. doi:10.1016/j.jad.2013.11.010

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Katherine Downton from the University of Maryland, Baltimore Health Sciences and Human Services Library for assistance with our literature search.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jennifer Klinedinst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klinedinst, N.J., Regenold, W.T. A mitochondrial bioenergetic basis of depression. J Bioenerg Biomembr 47, 155–171 (2015). https://doi.org/10.1007/s10863-014-9584-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9584-6

Keywords

Navigation