Skip to main content
Log in

Unraveling Cell Processes: Interference Imaging Interwoven with Data Analysis

  • Research Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1–0.6 Hz) result from plasma membrane processes and that higher frequency variations (20–26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IOP:

intrinsic optic properties

RI:

refractive index

References

  1. Hill, D.K., Keynes, R.D.: Opacity changes in stimulated nerve. J. Physiol. (London) 108, 278–281 (1949)

    Google Scholar 

  2. Hill, D.K.: The effect of stimulation on the opacity of crustacean nerve. J. Physiol. (London) 111, 283–303 (1950)

    Google Scholar 

  3. Cohen, L.B., Keynes, R.D., Hille, B.: Light scattering and birefringence changes during nerve activity. Nature 218, 438–441 (1968)

    Article  ADS  Google Scholar 

  4. Stepnoski, R.A., LaPorta, A., Raccuia-Behling, F., Blonder, J.E., Slusher, R.E., Kleinfeld, D.: Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc. Nat. Acad. Sci. USA 88, 9382–9386 (1991)

    Article  ADS  Google Scholar 

  5. Haller, M., Mironov, S.L., Richter, D.W.: Intrinsic optic signals in respiratory brain stem regions of mice: neurotransmitters, neuromodulators, and metabolic stress. J. Neurophysiol. 86, 412–421 (2001)

    Google Scholar 

  6. Boppart, S.A.: Optical coherence tomography: technology and application for neuroimaging. Psychophysiology 40, 529–541 (2003)

    Article  Google Scholar 

  7. Lazebnik, M., Marks, D.L., Potgieter, K.L., Gillete, R., Boppart, S.A.: Functional optical coherence tomography for detecting neural activity through scattering changes. Opt. Lett. 28, 1218–1220 (2003)

    Article  ADS  Google Scholar 

  8. Kleinfeld, D., LaPorta, A.: Detection of action potentials in vitro by changes in refractive index. In: Light Scattering Imaging of Neural Tissue Function. Humana Press, Totowa, New Jersey (2003)

    Google Scholar 

  9. Maksimov, G.V., Nikandrov, S.L., Lazareva, E.S., Tychinskii, V.P., Rubin, A.B.: A study of demyelination of nerve fibers using dynamic phase contrast microscopy. Bull. Exp. Biol. Med. 131, 457–460 (2001)

    Article  Google Scholar 

  10. Brazhe, N.A., Erokhova, L.A., Churin, A.A., Maksimov, G.V.: The relation of different-scale membrane processes under nitric oxide influence. J. Biol. Phys. 31, 531–546 (2005)

    Article  Google Scholar 

  11. Wolf, M.M., Varigos, G.A., Hunt, D., Sloman, J.G.: Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 2, 52–53 (1978)

    Google Scholar 

  12. Grossmann, A., Morlet, J.: Decomposition of Hardy functions into square integrable wavelets of constant shape. S.I.A.M. J. Math. Anal. 15, 723–736 (1984)

    MATH  MathSciNet  Google Scholar 

  13. Daubechies, I.: Ten Lectures on Wavelets, S.I.A.M., Philadelphia (1992)

    MATH  Google Scholar 

  14. Kaiser, G.: A Friendly Guide to Wavelets. Boston, Birkhäuser (1994)

    MATH  Google Scholar 

  15. Grossmann, A., Kronland-Martinet, R., Morlet, J.: In: Combes et al. (eds.) Wavelets: Time-Frequency Methods and Phase Space. Springer, Berlin (1989)

    Google Scholar 

  16. Quian Quiroga, R., Kraskov, A., Kreuz, T., Grassberger, P.: Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 65, 041903-1-14 (2002)

    Article  ADS  Google Scholar 

  17. Peng, C.K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  ADS  Google Scholar 

  18. Muzy, J.F., Bacry, E., Arneodo, A.: The multifractal formalism revisited with wavelets. Int. J. Bifurc. Chaos 4, 245–302 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  19. Braun, H.A., Bade, H., Hensel, H.: Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflügers Arch. 386, 1 (1980)

    Article  Google Scholar 

  20. Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge, UK (1996)

    MATH  Google Scholar 

  21. Tass, P., Rosenblum, M.G., Weule, J., Kurths, J., Pikovsky, A., Volkmann, J., Schnitzler, A., Freund, H.J.: Phys. Rev. Lett. 81, 3291–3294 (1998)

    Article  ADS  Google Scholar 

  22. Chon, K.H., Chen, Y.M., Marmarelis, V.Z., Marsh, D.J., Holstein-Rathlou, N.-H.: Detection of interactions between myogenic and tgf mechnisms using nonlinear analysis. Amer. J. Phys. 267, F160–F173 (1994) (Renal Fluid Electrolyte Physiol. 36)

    Google Scholar 

  23. Sosnovtseva, O.V., Pavlov, A.N., Mosekilde, E., Holstein-Rathlou, N.-H.: Bimodal oscillations in nephron autoregulation. Phys. Rev. E 66, 061909-1-7 (2002)

    ADS  Google Scholar 

  24. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge Nonlinear Science Series 12, Cambridge University Press, Cambridge, UK (2001)

    Google Scholar 

  25. Mosekilde, E., Maistrenko, Y., Postnov, D.: Chaotic Synchronization: Applications to Living Systems. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  26. Sosnovtseva, O.V., Pavlov, A.N., Mosekilde, E., Holstein-Rathlou, N.-H., Marsh, D.J.: A double-wavelet approach to study frequency and amplitude modulation in renal autoregulation. Phys. Rev. E 70, 031915-1-8 (2004)

    Article  ADS  Google Scholar 

  27. Tychinskii, V.P., Kufal’, G.E., Vyshenskaya, T.V., Perevedentseva, E.V., Nikandrov, S.L.: Measurements of submicron structures with the airyscan laser phase microscope. Quantum Elec. 27, 735–739 (1997)

    Article  ADS  Google Scholar 

  28. Tychinskii, V.P.: Coherent phase microscopy of intracellular processes. Phys. Uspekhi 44, 683–696 (2001)

    Google Scholar 

  29. Maksimov, G.V., Brindikova, T.A., Erokhova, L.A., Kleinhauz, A.L., Rubin, A.B.: Redistribution of membrane-bound Ca2+ in neurolemma of leech Retzius-neurons during thermostimulation. Biophysics 48, 683–689 (2003)

    Google Scholar 

  30. Brandon, D., Kaplan, W.D.: Microstructural Characterization of Materials. Wiley, Chichester, West Sussex, UK (1999)

    Google Scholar 

  31. Andreev, V.A., Indukaev, K.V.: The problem of subrayleigh resolution in interference microscopy. J. Russ. Laser Res. 24, 220–236 (2003)

    Article  Google Scholar 

  32. Andreev, V.A., Indukaev, K.V.: Phase modulation microscope MIM-2.1 for measurements of surface microrelief. General principles of design and operation. J. Russ. Laser Res. 26, 380–393 (2005)

    Article  Google Scholar 

  33. Erokhova, L.A., Novikov, S.M., Lazarev, G.L., Kazakova, T.A., Orlov, D.A., Indukaev, K.V., Maksimov, G.V.: Study of regular intracellular and membrane processes in neurons by laser interference microscopy. Bull. Exp. Biol. Med. 140, 262–264 (2005)

    Article  Google Scholar 

  34. Graevskaya, E.E., Akhalaya, M.Y., Goncharenko, E.N.: Effects of cold stress and epinephrine on degranulation of peritoneal mast cells in rats. Bull. Exp. Biol. Med. 131, 333–335 (2001)

    Article  Google Scholar 

  35. Ul’ianova, N.A., Maksimov, G.V., Churin, A.A., Rubin, A.B.: Effect of nitric oxide on viscosity of nerve cell membranes. Biophysics 50, 289–296 (2005)

    Google Scholar 

  36. Rodnenkov, O.V., Luneva, O.G., Ulyanova, N.A., Maksimov, G.V., Rubin, A.B., Orlov, S.N., Chazov, E.I.: Erythrocyte membrane fluidity and haemoglobin haemoporphyrin conformation: features revealed in patients with heart failure. Pathophysiology 11, 209–213 (2005)

    Article  Google Scholar 

  37. Luneva, O.G., Brazhe, N.A., Fadyukova, O.E., Akhalaya, M.Ya., Baizhumanov, A.A., Parshina, E.Yu., Demidova, A.E., Koshelev, V.B., Maksimov, G.V.: Changes in plasma membrane viscosity and hemoporphyrin conformation in erythrocyte hemoglobin under the conditions of ischemia and reperfusion of rat brain. Dokl. Biochem. Biophys. 405, 465–468 (2005)

    Article  Google Scholar 

  38. Hille, B.: Ion Channels of Exitable Membranes. Sinauer Associates, Sunderland, Mass (1992)

  39. Metuzuls, J., Montpetit, V., Clapin, D.F.: Organization of the neurofilamentous network. Cell Tissue Res. 214, 455–482 (1981)

    Google Scholar 

  40. Mironov, S.L., Ivannikov, M.V., Johansson, M.: [Ca2+]i signaling between mitochondria and endoplasmic reticulum in neurons is regulated by microtubules: from mitochondrial permeability transition pore to Ca2+-induced Ca2+ release. J. Biol. Chem. 280, 715–721 (2005)

    Google Scholar 

  41. Sosnovtseva, O.V., Pavlov, A.N., Brazhe, N.A., Brazhe, A.R., Erokhova, L.A., Maksimov, G.V., Mosekilde, E.: Interference microscopy under double-wavelet analysis: a new approach to studying cell dynamics. Phys. Rev. Lett. 94, 218103-1-4 (2005)

    Article  ADS  Google Scholar 

  42. Szucs, A., Molnar, G., S-Rozsa, K.: Periodic and oscillatory firing patterns in identified nerve cells of Lymnaea Stagnalis L., Acta Biol. Hung. 50, 269–278 (1999)

    Google Scholar 

  43. Schutt, A., Bullock, T.H., Basar, E.: Odor input generates 1.5 Hz and 3 Hz spectral peaks in the Helix pedal ganglion. Brain Res. 879, 73–87 (2000)

    Article  Google Scholar 

  44. Cohen, L.B.: Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev. 53, 373–418 (1973)

    Google Scholar 

  45. Landowne, D., Cohen, L.B.: Changes in light scattering during synaptic activity in the electric organ of the skate, Raia Erinacea. Biol. Bull. 137, 407–408 (1969)

    Google Scholar 

  46. Reboreda, A., Sanchez, E., Romero, M., Lamas, J.A.: Intrinsic spontaneous activity and subthreshold oscillations in neurones of the rat dorsal column nuclei in culture. J. Physiol. 551, 191–205 (2003)

    Article  Google Scholar 

  47. Dvorak, A.M.: Basophil and Mast Cell Degranulation and Recovery. Plenum, New York (1991)

    Google Scholar 

  48. Abraham, S.N., Malaviya, R.: Mast cells in infection and immunity. Infect. Immun. 65, 3501–3508 (1997)

    Google Scholar 

  49. Logan, M.R., Odemuyiwa, S.O., Moqbel, R.: Understanding exocytosis in immune and inflammatory cells: the molecular basis of mediator secretion. J. Allergy Clin. Immunol. 111, 923–932 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Brazhe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brazhe, N.A., Brazhe, A.R., Pavlov, A.N. et al. Unraveling Cell Processes: Interference Imaging Interwoven with Data Analysis. J Biol Phys 32, 191–208 (2006). https://doi.org/10.1007/s10867-006-9012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-006-9012-1

Key words

Navigation