Skip to main content
Erschienen in: Journal of Clinical Immunology 4/2016

08.04.2016 | Original Article

WHIM Syndrome Caused by Waldenström’s Macroglobulinemia-Associated Mutation CXCR4 L329fs

verfasst von: Qian Liu, Catherina Pan, Lizbeeth Lopez, Jiliang Gao, Daniel Velez, Sandra Anaya-O’Brien, Jean Ulrick, Patricia Littel, John S. Corns, Donald T. Ellenburg, Harry L. Malech, Philip M. Murphy, David H. McDermott

Erschienen in: Journal of Clinical Immunology | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

WHIM syndrome is an autosomal dominant immunodeficiency disease caused by mutations affecting the carboxy-terminus of CXCR4. To characterize novel genetic causes of the syndrome, we recruited a pediatric patient with possible WHIM syndrome, performed CXCR4 gene sequencing and compared his clinical phenotype and CXCR4 tail amino acid sequences with other patients with WHIM syndrome carrying CXCR4 R334X mutations. We identified and biochemically characterized a heterozygous 5 base pair deletion (nucleotides 986–990) located in the portion of the open reading frame (ORF) of CXCR4 that encodes the carboxy-terminal domain of the receptor. This CXCR4 L329fs mutation causes a frame-shift at codon 329 resulting in replacement of the final 24 predicted amino acids of the receptor with 12 missense amino acids. Like previously reported WHIM mutations, this frame-shift mutation CXCR4 L329fs decreased receptor downregulation in response to the CXCR4 agonist CXCL12 in patient PBMCs as well as in transfected K562 and HEK 293 cells, but increased calcium flux responses in K562 cells to CXCL12 stimulation. Thus, CXCR4 L329fs appears to be a de novo autosomal dominant frame-shift gain-of-function mutation that like other carboxy-terminus mutations causes WHIM syndrome. The same CXCR4 L329fs frame-shift variant has been reported to occur in tumor cells from a patient with Waldenström’s Macroglobulemia (WM), but is caused by a distinct genetic mechanism: insertion of a single nucleotide in the L329 codon, providing additional evidence that the carboxy-terminus of CXCR4 is a genetic hotspot for mutation.
Literatur
1.
Zurück zum Zitat Wetzler M, Talpaz M, Kleinerman ES, King A, Huh YO, Gutterman JU, et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med. 1990;89:663–72.CrossRefPubMed Wetzler M, Talpaz M, Kleinerman ES, King A, Huh YO, Gutterman JU, et al. A new familial immunodeficiency disorder characterized by severe neutropenia, a defective marrow release mechanism, and hypogammaglobulinemia. Am J Med. 1990;89:663–72.CrossRefPubMed
2.
Zurück zum Zitat Krill Jr CE, Smith HD, Mauer AM. Chronic idiopathic granulocytopenia. N Engl J Med. 1964;270:973–9.CrossRefPubMed Krill Jr CE, Smith HD, Mauer AM. Chronic idiopathic granulocytopenia. N Engl J Med. 1964;270:973–9.CrossRefPubMed
3.
Zurück zum Zitat Zuelzer WW. “Myelokathexis”--a new form of chronic granulocytopenia. Report of a case. N Engl J Med. 1964;270:699–704.CrossRefPubMed Zuelzer WW. “Myelokathexis”--a new form of chronic granulocytopenia. Report of a case. N Engl J Med. 1964;270:699–704.CrossRefPubMed
4.
Zurück zum Zitat Dotta L, Tassone L, Badolato R. Clinical and genetic features of Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) syndrome. Curr Mol Med. 2011;11:317–25.CrossRefPubMed Dotta L, Tassone L, Badolato R. Clinical and genetic features of Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) syndrome. Curr Mol Med. 2011;11:317–25.CrossRefPubMed
5.
Zurück zum Zitat McDermott DH, Liu Q, Ulrick J, Kwatemaa N, Anaya-O’Brien S, Penzak SR, et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood. 2011;118:4957–62.CrossRefPubMedPubMedCentral McDermott DH, Liu Q, Ulrick J, Kwatemaa N, Anaya-O’Brien S, Penzak SR, et al. The CXCR4 antagonist plerixafor corrects panleukopenia in patients with WHIM syndrome. Blood. 2011;118:4957–62.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Liu Q, Chen H, Ojode T, Gao X, Anaya-O’Brien S, Turner NA, et al. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood. 2012;120:181–9.CrossRefPubMedPubMedCentral Liu Q, Chen H, Ojode T, Gao X, Anaya-O’Brien S, Turner NA, et al. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood. 2012;120:181–9.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Tassone L, Moratto D, Vermi W, De Francesco M, Notarangelo LD, Porta F, et al. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood. 2010;116:4870–3.CrossRefPubMed Tassone L, Moratto D, Vermi W, De Francesco M, Notarangelo LD, Porta F, et al. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood. 2010;116:4870–3.CrossRefPubMed
8.
Zurück zum Zitat Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34:70–4.CrossRefPubMed Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34:70–4.CrossRefPubMed
9.
Zurück zum Zitat Al Ustwani O, Kurzrock R, Wetzler M. Genetics on a WHIM. Br J Haematol 2014;164:15–23. Al Ustwani O, Kurzrock R, Wetzler M. Genetics on a WHIM. Br J Haematol 2014;164:15–23.
10.
Zurück zum Zitat Diaz GA. CXCR4 mutations in WHIM syndrome: a misguided immune system? Immunol Rev. 2005;203:235–43.CrossRefPubMed Diaz GA. CXCR4 mutations in WHIM syndrome: a misguided immune system? Immunol Rev. 2005;203:235–43.CrossRefPubMed
11.
Zurück zum Zitat Gulino AV. WHIM syndrome: a genetic disorder of leukocyte trafficking. Curr Opin Allergy Clin Immunol. 2003;3:443–50.CrossRefPubMed Gulino AV. WHIM syndrome: a genetic disorder of leukocyte trafficking. Curr Opin Allergy Clin Immunol. 2003;3:443–50.CrossRefPubMed
13.
Zurück zum Zitat Beaussant Cohen S, Fenneteau O, Plouvier E, Rohrlich PS, Daltroff G, Plantier I, et al. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis. 2012;7:71.CrossRefPubMedPubMedCentral Beaussant Cohen S, Fenneteau O, Plouvier E, Rohrlich PS, Daltroff G, Plantier I, et al. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis. 2012;7:71.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Venkatesan S, Rose JJ, Lodge R, Murphy PM, Foley JF. Distinct mechanisms of agonist-induced endocytosis for human chemokine receptors CCR5 and CXCR4. Mol Biol Cell. 2003;14:3305–24.CrossRefPubMedPubMedCentral Venkatesan S, Rose JJ, Lodge R, Murphy PM, Foley JF. Distinct mechanisms of agonist-induced endocytosis for human chemokine receptors CCR5 and CXCR4. Mol Biol Cell. 2003;14:3305–24.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Haribabu B, Richardson RM, Fisher I, Sozzani S, Peiper SC, Horuk R, et al. Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J Biol Chem. 1997;272:28726–31.CrossRefPubMed Haribabu B, Richardson RM, Fisher I, Sozzani S, Peiper SC, Horuk R, et al. Regulation of human chemokine receptors CXCR4. Role of phosphorylation in desensitization and internalization. J Biol Chem. 1997;272:28726–31.CrossRefPubMed
17.
Zurück zum Zitat Walters KB, Green JM, Surfus JC, Yoo SK, Huttenlocher A. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood. 2010;116:2803–11.CrossRefPubMedPubMedCentral Walters KB, Green JM, Surfus JC, Yoo SK, Huttenlocher A. Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome. Blood. 2010;116:2803–11.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood. 2005;105:2449–57.CrossRefPubMed Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood. 2005;105:2449–57.CrossRefPubMed
19.
Zurück zum Zitat McDermott DH, Lopez J, Deng F, Liu Q, Ojode T, Chen H, et al. AMD3100 is a potent antagonist at CXCR4(R334X), a hyperfunctional mutant chemokine receptor and cause of WHIM syndrome. J Cell Mol Med. 2010;15(10):2071–81.CrossRef McDermott DH, Lopez J, Deng F, Liu Q, Ojode T, Chen H, et al. AMD3100 is a potent antagonist at CXCR4(R334X), a hyperfunctional mutant chemokine receptor and cause of WHIM syndrome. J Cell Mol Med. 2010;15(10):2071–81.CrossRef
20.
Zurück zum Zitat Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112:973–80.CrossRefPubMed Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol. 2003;112:973–80.CrossRefPubMed
21.
Zurück zum Zitat Bloemers BL, van Bleek GM, Kimpen JL, Bont L. Distinct abnormalities in the innate immune system of children with Down syndrome. J Pediatr. 2010;156:804–9. 9 e1–e5. CrossRefPubMed Bloemers BL, van Bleek GM, Kimpen JL, Bont L. Distinct abnormalities in the innate immune system of children with Down syndrome. J Pediatr. 2010;156:804–9. 9 e1–e5. CrossRefPubMed
22.
Zurück zum Zitat Piatosa B, Wolska-Kusnierz B, Pac M, Siewiera K, Galkowska E, Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry B Clin Cytom. 2010;78:372–81.CrossRefPubMed Piatosa B, Wolska-Kusnierz B, Pac M, Siewiera K, Galkowska E, Bernatowska E. B cell subsets in healthy children: reference values for evaluation of B cell maturation process in peripheral blood. Cytometry B Clin Cytom. 2010;78:372–81.CrossRefPubMed
23.
Zurück zum Zitat Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123:2791–6.CrossRefPubMed Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenstrom macroglobulinemia. Blood. 2014;123:2791–6.CrossRefPubMed
24.
Zurück zum Zitat Mueller W, Schutz D, Nagel F, Schulz S, Stumm R. Hierarchical organization of multi-site phosphorylation at the CXCR4 C terminus. PLoS One. 2013;8, e64975.CrossRefPubMedPubMedCentral Mueller W, Schutz D, Nagel F, Schulz S, Stumm R. Hierarchical organization of multi-site phosphorylation at the CXCR4 C terminus. PLoS One. 2013;8, e64975.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46.CrossRefPubMed Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenstrom macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123:1637–46.CrossRefPubMed
26.
Zurück zum Zitat McDermott DH, Liu Q, Velez D, Lopez L, Anaya-O’Brien S, Ulrick J, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood. 2014;123:2308–16. McDermott DH, Liu Q, Velez D, Lopez L, Anaya-O’Brien S, Ulrick J, et al. A phase 1 clinical trial of long-term, low-dose treatment of WHIM syndrome with the CXCR4 antagonist plerixafor. Blood. 2014;123:2308–16.
Metadaten
Titel
WHIM Syndrome Caused by Waldenström’s Macroglobulinemia-Associated Mutation CXCR4 L329fs
verfasst von
Qian Liu
Catherina Pan
Lizbeeth Lopez
Jiliang Gao
Daniel Velez
Sandra Anaya-O’Brien
Jean Ulrick
Patricia Littel
John S. Corns
Donald T. Ellenburg
Harry L. Malech
Philip M. Murphy
David H. McDermott
Publikationsdatum
08.04.2016
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 4/2016
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-016-0276-3

Weitere Artikel der Ausgabe 4/2016

Journal of Clinical Immunology 4/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.