Skip to main content

Advertisement

Log in

Use of Genetic Testing for Primary Immunodeficiency Patients

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

A Correction to this article was published on 21 May 2018

This article has been updated

Abstract

Genetic testing plays a critical role in diagnosis for many primary immunodeficiency diseases. The goals of this report are to outline some of the challenges that clinical immunologists face routinely in the use of genetic testing for patient care. In addition, we provide a review of the types of genetic testing used in the diagnosis of PID, including their strengths and limitations. We describe the strengths and limitations of different genetic testing approaches for specific clinical contexts that raise concern for specific PID disorders in light of the challenges reported by the clinical immunologist members of the CIS in a recent membership survey. Finally, we delineate the CIS’s recommendations for the use of genetic testing in light of these issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 21 May 2018

    The original version of this article unfortunately contained mistakes in some of the author names and affiliations. The correct list of author names and affiliations is below, with the corrections in bold.

References

  1. Vetrie D, Vorechobsky I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361:226–33.

    Article  PubMed  CAS  Google Scholar 

  2. Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, et al. Primary immunodeficiency diseases: genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol. 2017;139:232–45.

    Article  PubMed  Google Scholar 

  3. Zielinski SL. As genetic tests move into the mainstream, challenges await for doctors and patients. JNCI J Natl Cancer Inst. 2005;97(5):334–6. https://doi.org/10.1093/jnci/97.5.334.

    Article  PubMed  Google Scholar 

  4. Zarrei M, MacDonald JR, Merico D, Scherer SW. A copy number variation map of the human genome. Nat Rev Genet. 2015;16:172–83.

    Article  PubMed  CAS  Google Scholar 

  5. Bi W, Borgan C, Pursley AN, Hixson P, Shaw CA, Bacino CA, et al. Comparison of chromosome analysis and chromosomal microarray analysis: what is the value of chromosome analysis in today’s genomic array era? Genet Med. 2013;15:450–7.

    Article  PubMed  Google Scholar 

  6. Kang SH, Shaw C, Ou Z, Eng PA, Cooper ML, Pursley AN, et al. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results. Am J Med Genet A. 2010;152A:1111–26.

    Article  PubMed  Google Scholar 

  7. Neill NJ, Ballif BC, Lamb AN, Parikh S, Ravnan JB, Schultz RA, et al. Recurrence, submicroscopic complexity, and potential clinical relevance of copy gains detected by array CGH that are shown to be unbalanced insertions by FISH. Genome Res. 2011;21:535–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Manning M, Hudgins L, Practice Professional, and Committee Guidelines. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12:742–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86:749–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Qin H, Yamada M, Tian L, Stewart DM, Gulino AV, Nelson DL. Tracking gene expression in primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2003;3:437–42.

    Article  PubMed  CAS  Google Scholar 

  11. Keller M, Glessner J, Resnick E, Perez E, Chapel H, Lucas M, et al. Burden of copy number variation in common variable immunodeficiency. Clin Exp Immunol. 2014;177:269–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Orange JS, Glessner JT, Resnick E, Sullivan KE, Lucas M, Ferry B, et al. Genome-wide association identifies diverse causes of common variable immunodeficiency. J Allergy Clin Immunol. 2011;127:1360–7. e6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Green MR, Camilleri E, Gandhi MK, Peake J, Griffiths LR. A novel immunodeficiency disorder characterized by genetic amplification of interleukin 25. Genes Immun. 2011;12:663–6.

    Article  PubMed  CAS  Google Scholar 

  14. Olsson LM, Nerstedt A, Lindqvist AK, Johansson SC, Medstrand P, Olofsson P, et al. Copy number variation of the gene NCF1 is associated with rheumatoid arthritis. Antioxid Redox Signal. 2012;16:71–8.

    Article  PubMed  CAS  Google Scholar 

  15. Sanger F, Nicklen S, Coulsen AR. DNA sequencing with chain terminating inhibitors. PNAS. 1977;74(2):5463–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Retterer K, Scuffins J, Schmidt D, Lewis R, Pineda-Alvarez D, Stafford A, et al. Assessing copy number from exome sequencing and exome array CGH based on CNV spectrum in a large clinical cohort. Genet Med. 2015;17:623–9.

    Article  PubMed  CAS  Google Scholar 

  17. Fromer M, Purcell SM. Using XHMM software to detect copy number variation in whole-exome sequencing data. Curr Protoc Hum Genet. 2014;81:7.23.1–21.

    Article  Google Scholar 

  18. Magi A, Tattini L, Cifola I, D'Aurizio R, Benelli M, Mangano E, et al. EXCAVATOR: detecting copy number variants from whole-exome sequencing data. Genome Biol. 2013;14:R120.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet. 2010;11(6):415–25.

    Article  PubMed  CAS  Google Scholar 

  20. Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med. 2014;211(11):2137–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, et al. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Chou J, Ohsumi TK, Geha RS. Wuse of wole exome and genome sequencing in the identification of fenetic causes of primary immunodeficiencies. Curr Opin Allergy Clin Immunol. 2012;12:623–6.

    Article  PubMed  CAS  Google Scholar 

  23. Van Schouwenburg PA, Davenport EE, Kienzler AK, et al. Application of whole genome and RNA sequencing to investigate the genomic landscape of common variable immunodeficiency disorders. Clin Immunol. 2015;160:301–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mousallem T, Urban TJ, McSweeney KM, Kleinstein SE, Zhu M, Adeli M, et al. Clinical application of whole-genome sequencing in patients with primary immunodeficiency. J Allergy Clin Immunol. 2015;136(2):476–9.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Puck JM, Middelton L, Pepper AE. Carrier and prenatal diagnosis of X-linked severe combined immunodeficiency: mutation detection methods and utilization. Hum Genet. 1997;99(5):628–33.

    Article  PubMed  CAS  Google Scholar 

  26. Lee WI, Huang JL, Yeh KW, Cheng PJ, Jaing TH, Lin SJ, et al. The effects of prenatal genetic analysis on fetuses born to carrier mothers with primary immunodeficiency diseases. Ann Med. 2016;48(1–2):103–10.

    Article  PubMed  CAS  Google Scholar 

  27. Yaron Y, Jani J, Schmid M, Oepkes D. Current status of testing for microdeletion syndromes and rare autosomal trisomies using cell-free DNA technology. Obstet Gynecol. 2015;126(5):1095–9.

    Article  PubMed  CAS  Google Scholar 

  28. Giliani S, Fiorini M, Mella P, Candotti F, Schumacher RF, Wengler GS, et al. Prenatal molecular diagnosis of Wiskott-Aldrich syndrome by direct mutation analysis. Prenat Diagn. 1999;19(1):36–40.

    Article  PubMed  CAS  Google Scholar 

  29. Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI, et al. Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine. 2000;79:155–69.

    Article  PubMed  CAS  Google Scholar 

  30. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE, et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med. 2010;363(27):2600–10.

  31. Jin Y, Mazz C, Christie JR, et al. Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood. 2004;104(13):4010–9.

    Article  PubMed  CAS  Google Scholar 

  32. Bryant N, Watts T. Thrombocytopenic syndromes masquerading as childhood immune thrombocytopenic purpura. Clin Pediatr. 2011;50(3):225–30.

    Article  Google Scholar 

  33. Van den Berg JM, van Koppen E, Ahlin A, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4:e5234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cale CM, Morton L, Goldblatt D. Cutaneous and other lupus-like symptoms in carriers of x-linked CGD: incidence and autoimmune serology. Clin Exp Immunol. 2007;148(1):79–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Volk T, Pannicke U, Reisli I, Bulashevska A, Ritter J, Björkman A, et al. DCLRE1C (ARTEMIS) mutations causing phenotypes ranging from atypical severe combined immunodeficiency to mere antibody deficiency. Hum Mol Genet. 2015;24(25):7361–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Avila EM, Uzel G, Hsu A, Milner JD, Turner ML, Pittaluga S, et al. Highly variable clinical phenotypes of hypomorphic RAG1 mutations. Pediatrics. 2010;126(5):e1248–52. https://doi.org/10.1542/peds.2009-3171.

    Article  PubMed  Google Scholar 

  37. Bonilla FA, Khan DA, Ballas ZK, Chinen J, Frank MM, Hsu JT, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J Allergy Clin Immunol. 2015;136:1186–205.

    Article  PubMed  Google Scholar 

  38. Buckley RH, Win CM, Moser BK, Parrott RE, Sajaroff E, Sarzotti Kelsoe M. Post-transplantation B cell function in different molecular types of SCID. J Clin Immunol. 2013;33:96–110.

    Article  PubMed  CAS  Google Scholar 

  39. Haddad E, Leroy S, Buckley RH. B-cell reconstitution for SCID: should a conditioning regimen be used in SCID treatment? JACI. 2013;131:994–1000.

    CAS  Google Scholar 

  40. Heimall J, Puck J, Buckley R, Fleisher TA, Gennery AR, Neven B, et al. Current knowledge and priorities for future research in late effects after hematopoietic stem cell transplantation (HCT) for severe combined immunodeficiency patients: a consensus statement from the second pediatric blood and marrow transplant consortium international conference on late effects after pediatric HCT. Biol Blood Marrow Transplant. 2017;23(3):379–87.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sarzotti-Kelsoe M, Win CM, Parrott RE, Cooney M, Moser BK, Roberts JL. Thymic output, T cell diversity and T-cell function in long term human SCID chimeras. Blood. 2009;114:1445–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Cowan MJ, Gennery AC. Radiation-sensitive severe combined immunodeficiency: the argmuents for and against conditioning before hematopoietic cell transplantation – what to do? JACI. 2015;136:1178–85.

    Google Scholar 

  43. Gaspar B. Bone marrow transplantation and alternatives for adenosine deaminase deficiency. Immunol Allergy Clin North Am. 2010;30:221–36.

    Article  PubMed  Google Scholar 

  44. Lo B, Zhang K, Lu W, et al. Autominnue disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;6246:436–40.

    Article  CAS  Google Scholar 

  45. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345:1623–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Goldbach-Mansky R, Kastner DL. Autoinflammation: the prominent role of IL-1 in monogenic autoinflammatory disease and implications for common illnesses. JACI. 2009;124:1141–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Heimall.

Ethics declarations

Conflict of Interest

The authors declared that they have no conflict of interest, except for the following:

Jennifer Heimall, MD: ADMA Consultant; CSL Behring speaker panel

Sarah Henrickson, MD, PhD: Horizon Pharmaceuticals advisory board

Kenneth Paris, MD, MPH: Shire Advisory Board Participant, Speaker, Clinical Trial Investigator; CSL Behring Advisory Board Participant

Troy Torgerson, MD, PhD: Director Seattle Children’s Immunology Diagnostic Lab, Seattle, WA

Jordan Orange, MD, PhD: Shire Consultant, Grifols Consultant

Additional information

Summary Statements

1. The Clinical Immunology Society (CIS) supports the use of genetic testing by clinical immunologists to provide state of the art diagnosis and precision treatment for primary immunodeficiency patients.

2. Genetic testing provides the ability to make a definitive diagnosis, project prognosis based on genotype-phenotype association, utilize available targeted therapy and inform family planning decisions.

3. Genetic counseling should be provided before and after genetic testing with an immunologist or genetic counselor with expertise in primary immunodeficiency.

4. The choice of genetic test for a given patient should be made by the immunologist within the context of the patient’s clinical history and other phenotypic and functional results.

5. The use and application of individual Sanger sequencing tests, gene panels and broader genomic approaches has different and rapidly changing cost and turn-around-time implications.

6. In patients in whom initial genetic testing is not conclusive, follow up testing may be needed to determine a conclusive diagnosis.

7. Genetic testing should not be a pre-requisite confirmatory test to initiate or continue disorder-specific or supportive therapy such as immunoglobulin replacement in patients where the clinical history and routine testing demonstrate a clear need for the therapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heimall, J.R., Hagin, D., Hajjar, J. et al. Use of Genetic Testing for Primary Immunodeficiency Patients. J Clin Immunol 38, 320–329 (2018). https://doi.org/10.1007/s10875-018-0489-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-018-0489-8

Keywords

Navigation