Skip to main content
Erschienen in: Journal of Clinical Immunology 3/2019

05.03.2019 | Original Article

Human DOCK2 Deficiency: Report of a Novel Mutation and Evidence for Neutrophil Dysfunction

verfasst von: Leen Moens, Mieke Gouwy, Barbara Bosch, Oleksandr Pastukhov, Alejandro Nieto-Patlàn, Ulrich Siler, Giorgia Bucciol, Djalila Mekahli, François Vermeulen, Lars Desmet, Sophie Maebe, Helena Flipts, Anniek Corveleyn, Despina Moshous, Pierre Philippet, Stuart G. Tangye, Bertrand Boisson, Jean-Laurent Casanova, Benoit Florkin, Sofie Struyf, Janine Reichenbach, Jacinta Bustamante, Luigi D. Notarangelo, Isabelle Meyts

Erschienen in: Journal of Clinical Immunology | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

DOCK2 is a guanine-nucleotide-exchange factor for Rac proteins. Activated Rac serves various cellular functions including the reorganization of the actin cytoskeleton in lymphocytes and neutrophils and production of reactive oxygen species in neutrophils. Since 2015, six unrelated patients with combined immunodeficiency and early-onset severe viral infections caused by bi-allelic loss-of-function mutations in DOCK2 have been described. Until now, the function of phagocytes, specifically neutrophils, has not been assessed in human DOCK2 deficiency. Here, we describe a new kindred with four affected siblings harboring a homozygous splice-site mutation (c.2704-2 A > C) in DOCK2. The mutation results in alternative splicing and a complete loss of DOCK2 protein expression. The patients presented with leaky severe combined immunodeficiency or Omenn syndrome. The novel mutation affects EBV-B cell migration and results in NK cell dysfunction similar to previous observations. Moreover, both cytoskeletal rearrangement and reactive oxygen species production are partially impaired in DOCK2-deficient neutrophils.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Nishihara H, Kobayashi S, Hashimoto Y, Ohba F, Mochizuki N, Kurata T, et al. Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins. Biochim Biophys Acta. 1999;1452(2):179–87.CrossRefPubMed Nishihara H, Kobayashi S, Hashimoto Y, Ohba F, Mochizuki N, Kurata T, et al. Non-adherent cell-specific expression of DOCK2, a member of the human CDM-family proteins. Biochim Biophys Acta. 1999;1452(2):179–87.CrossRefPubMed
2.
Zurück zum Zitat Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol. 2014;93(10–12):466–77.CrossRefPubMed Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease. Eur J Cell Biol. 2014;93(10–12):466–77.CrossRefPubMed
3.
Zurück zum Zitat Bokoch GM. Regulation of innate immunity by Rho GTPases. Trends Cell Biol. 2005;15(3):163–71.CrossRefPubMed Bokoch GM. Regulation of innate immunity by Rho GTPases. Trends Cell Biol. 2005;15(3):163–71.CrossRefPubMed
4.
Zurück zum Zitat Heasman S, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9(9):690–701.CrossRefPubMed Heasman S, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9(9):690–701.CrossRefPubMed
5.
Zurück zum Zitat Wang J, Xu L, Shaheen S, et al. Growth of B cell receptor microclusters is regulated by PIP2 and PIP3 equilibrium and Dock2 recruitment and activation. Cell Rep. 2017;21(9):2541–57.CrossRefPubMed Wang J, Xu L, Shaheen S, et al. Growth of B cell receptor microclusters is regulated by PIP2 and PIP3 equilibrium and Dock2 recruitment and activation. Cell Rep. 2017;21(9):2541–57.CrossRefPubMed
6.
Zurück zum Zitat Malhotra S, Kovats S, Zhang W, Coggeshall KM. B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. Biol Chem J. 2009;284(36):24088–97.CrossRef Malhotra S, Kovats S, Zhang W, Coggeshall KM. B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. Biol Chem J. 2009;284(36):24088–97.CrossRef
7.
Zurück zum Zitat Fukui Y, Hashimoto O, Sanui T, Oono T, Koga H, Abe M, et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature. 2001;412:826–31.CrossRefPubMed Fukui Y, Hashimoto O, Sanui T, Oono T, Koga H, Abe M, et al. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature. 2001;412:826–31.CrossRefPubMed
8.
Zurück zum Zitat Pfajfer L, Mair NK, Jiménez-Heredia R, et al. Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity. J Allergy Clin Immunol. 2018;S0091-6749(18):30694. Pfajfer L, Mair NK, Jiménez-Heredia R, et al. Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity. J Allergy Clin Immunol. 2018;S0091-6749(18):30694.
9.
Zurück zum Zitat Pantarelli C, Welch HCE. Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment. Eur J Clin Investig. 2018;48:e12939.CrossRef Pantarelli C, Welch HCE. Rac-GTPases and Rac-GEFs in neutrophil adhesion, migration and recruitment. Eur J Clin Investig. 2018;48:e12939.CrossRef
10.
Zurück zum Zitat Dobbs K, Domínguez Conde C, Zhang SY, Parolini S, Audry M, Chou J, et al. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N Engl J Med. 2015;372(25):2409–22.CrossRefPubMedPubMedCentral Dobbs K, Domínguez Conde C, Zhang SY, Parolini S, Audry M, Chou J, et al. Inherited DOCK2 deficiency in patients with early-onset invasive infections. N Engl J Med. 2015;372(25):2409–22.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Alizadeh Z, Mazinani M, Shakerian L, Nabavi M, Fazlollahi MR. DOCK2 deficiency in a patient with hyper IgM phenotype. J Clin Immunol. 2018;38(1):10–2.CrossRefPubMed Alizadeh Z, Mazinani M, Shakerian L, Nabavi M, Fazlollahi MR. DOCK2 deficiency in a patient with hyper IgM phenotype. J Clin Immunol. 2018;38(1):10–2.CrossRefPubMed
12.
Zurück zum Zitat Sanui T, Inayoshi A, Noda M, et al. DOCK2 is essential for antigen-induced translocation of TCR and lipid rafts, but not PKC-theta and LFA-1, in T cells. Immunity. 2003;19(1):119–29.CrossRefPubMed Sanui T, Inayoshi A, Noda M, et al. DOCK2 is essential for antigen-induced translocation of TCR and lipid rafts, but not PKC-theta and LFA-1, in T cells. Immunity. 2003;19(1):119–29.CrossRefPubMed
13.
Zurück zum Zitat Nombela-Arrieta C, Lacalle RA, Montoya MC, et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity. 2004;21(3):429–41.CrossRefPubMed Nombela-Arrieta C, Lacalle RA, Montoya MC, et al. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity. 2004;21(3):429–41.CrossRefPubMed
14.
Zurück zum Zitat Sakai Y, Tanaka Y, Yanagihara T, Watanabe M, Duan X, Terasawa M, et al. The Rac activator DOCK2 regulates natural killer cell-mediated cytotoxicity in mice through the lytic synapse formation. Blood. 2013;122(3):386–93.CrossRefPubMed Sakai Y, Tanaka Y, Yanagihara T, Watanabe M, Duan X, Terasawa M, et al. The Rac activator DOCK2 regulates natural killer cell-mediated cytotoxicity in mice through the lytic synapse formation. Blood. 2013;122(3):386–93.CrossRefPubMed
15.
Zurück zum Zitat Kunisaki Y, Nishikimi A, Tanaka Y, et al. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J Cell Biol. 2006;174(5):647–52.CrossRefPubMedPubMedCentral Kunisaki Y, Nishikimi A, Tanaka Y, et al. DOCK2 is a Rac activator that regulates motility and polarity during neutrophil chemotaxis. J Cell Biol. 2006;174(5):647–52.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Watanabe M, Terasawa M, Miyano K, et al. DOCK2 and DOCK5 act additively in neutrophils to regulate chemotaxis, superoxide production, and extracellular trap formation. J Immunol. 2014;193(11):5660–7.CrossRefPubMedPubMedCentral Watanabe M, Terasawa M, Miyano K, et al. DOCK2 and DOCK5 act additively in neutrophils to regulate chemotaxis, superoxide production, and extracellular trap formation. J Immunol. 2014;193(11):5660–7.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Gouwy M, Struyf S, Mahieu F, et al. The unique property of the CC chemokine regakine-1 to synergize with other plasma-derived inflammatory mediators in neutrophil chemotaxis does not reside in its NH2-terminal structure. Mol Pharmacol. 2002;62(1):173–80.CrossRefPubMed Gouwy M, Struyf S, Mahieu F, et al. The unique property of the CC chemokine regakine-1 to synergize with other plasma-derived inflammatory mediators in neutrophil chemotaxis does not reside in its NH2-terminal structure. Mol Pharmacol. 2002;62(1):173–80.CrossRefPubMed
18.
Zurück zum Zitat Gouwy M, Struyf S, Noppen S, Schutyser E, Springael JY, Parmentier M, et al. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol Pharmacol. 2008;74(2):485–95.CrossRefPubMed Gouwy M, Struyf S, Noppen S, Schutyser E, Springael JY, Parmentier M, et al. Synergy between coproduced CC and CXC chemokines in monocyte chemotaxis through receptor-mediated events. Mol Pharmacol. 2008;74(2):485–95.CrossRefPubMed
19.
Zurück zum Zitat Cockx M, Gouwy M, Godding V, et al. Neutrophils from patients with primary ciliary dyskinesia display reduced chemotaxis to CXCR2 ligands. Front Immunol. 2017;8:1126.CrossRefPubMedPubMedCentral Cockx M, Gouwy M, Godding V, et al. Neutrophils from patients with primary ciliary dyskinesia display reduced chemotaxis to CXCR2 ligands. Front Immunol. 2017;8:1126.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat De Buck M, Gouwy M, Berghmans N, et al. COOH-terminal SAA1 peptides fail to induce chemokines but synergize with CXCL8 and CCL3 to recruit leukocytes via FPR2. Blood. 2018;131(4):439–49.PubMed De Buck M, Gouwy M, Berghmans N, et al. COOH-terminal SAA1 peptides fail to induce chemokines but synergize with CXCL8 and CCL3 to recruit leukocytes via FPR2. Blood. 2018;131(4):439–49.PubMed
21.
Zurück zum Zitat William ST, Dunn E, Notarangelo LD, et al. Establishing diagnostic criteria for SCID, leaky SCID, and Omenn syndrome: the primary immune deficiency treatment consortium experience. J Allergy Clin Immunol. 2014;133(4):1092–8.CrossRef William ST, Dunn E, Notarangelo LD, et al. Establishing diagnostic criteria for SCID, leaky SCID, and Omenn syndrome: the primary immune deficiency treatment consortium experience. J Allergy Clin Immunol. 2014;133(4):1092–8.CrossRef
22.
Zurück zum Zitat Shiow LR, Paris K, Akana MC, et al. Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol. 2009;131(1):24–30.CrossRefPubMed Shiow LR, Paris K, Akana MC, et al. Severe combined immunodeficiency (SCID) and attention deficit hyperactivity disorder (ADHD) associated with a Coronin-1A mutation and a chromosome 16p11.2 deletion. Clin Immunol. 2009;131(1):24–30.CrossRefPubMed
23.
Zurück zum Zitat Punwani D, Pelz B, Yu J, Arva NC, Schafernak K, Kondratowicz K, et al. Coronin-1A: immune deficiency in humans and mice. J Clin Immunol. 2015;35(2):100–7.CrossRefPubMedPubMedCentral Punwani D, Pelz B, Yu J, Arva NC, Schafernak K, Kondratowicz K, et al. Coronin-1A: immune deficiency in humans and mice. J Clin Immunol. 2015;35(2):100–7.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Dadi HK, Simon AJ, Roifman CM. Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Engl J Med. 2003;349(19):1821–8.CrossRefPubMed Dadi HK, Simon AJ, Roifman CM. Effect of CD3delta deficiency on maturation of alpha/beta and gamma/delta T-cell lineages in severe combined immunodeficiency. N Engl J Med. 2003;349(19):1821–8.CrossRefPubMed
25.
Zurück zum Zitat Moshous D, Martin E, Carpentier W, et al. Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol. 2013;131(6):1594–603.CrossRefPubMed Moshous D, Martin E, Carpentier W, et al. Whole-exome sequencing identifies Coronin-1A deficiency in 3 siblings with immunodeficiency and EBV-associated B-cell lymphoproliferation. J Allergy Clin Immunol. 2013;131(6):1594–603.CrossRefPubMed
26.
28.
Zurück zum Zitat Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in genie. J Comp Biol. 1997;4(3):311–23.CrossRef Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in genie. J Comp Biol. 1997;4(3):311–23.CrossRef
29.
Zurück zum Zitat Nakayama T, Fujisawa R, Izawa D, Hieshima K, Takada K, Yoshie O. Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5. J Virol. 2002;76(6):3072–7.CrossRefPubMedPubMedCentral Nakayama T, Fujisawa R, Izawa D, Hieshima K, Takada K, Yoshie O. Human B cells immortalized with Epstein-Barr virus upregulate CCR6 and CCR10 and downregulate CXCR4 and CXCR5. J Virol. 2002;76(6):3072–7.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Dusi S, Nadalini KA, Donini M, et al. Nicotinamide-adenine dinucleotide phosphate oxidase assembly and activation in EBV-transformed B lymphoblastoid cell lines of normal and chronic granulomatous disease patients. J Immunol. 1998;161(9):4968–74.PubMed Dusi S, Nadalini KA, Donini M, et al. Nicotinamide-adenine dinucleotide phosphate oxidase assembly and activation in EBV-transformed B lymphoblastoid cell lines of normal and chronic granulomatous disease patients. J Immunol. 1998;161(9):4968–74.PubMed
31.
Zurück zum Zitat Ammann AJ, Hong R. Disorders of the T-cell system. In: Stiehm ER, editor. Immuno-logic disorders in infants and children. 3rd ed ed. Philadelphia: W.B. Saunders; 1989. p. 257–315. Ammann AJ, Hong R. Disorders of the T-cell system. In: Stiehm ER, editor. Immuno-logic disorders in infants and children. 3rd ed ed. Philadelphia: W.B. Saunders; 1989. p. 257–315.
34.
Zurück zum Zitat Roberts AW, Kim C, Zhen L, et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity. 1999;10(2):183–96.CrossRefPubMed Roberts AW, Kim C, Zhen L, et al. Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity. 1999;10(2):183–96.CrossRefPubMed
35.
Zurück zum Zitat Williams DA, Tao W, Yang F, et al. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood. 2000;96(5):1646–54.PubMed Williams DA, Tao W, Yang F, et al. Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood. 2000;96(5):1646–54.PubMed
36.
Zurück zum Zitat Ambruso DR, Knall C, Abell AN, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A. 2000;97(9):4654–9.CrossRefPubMedPubMedCentral Ambruso DR, Knall C, Abell AN, et al. Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A. 2000;97(9):4654–9.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC, et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science. 2003;302(5644):445–9.CrossRefPubMed Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC, et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science. 2003;302(5644):445–9.CrossRefPubMed
38.
Zurück zum Zitat Alkhairy OK, Rezaei N, Graham RR, et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J Allergy Clin Immunol. 2015;135(5):1380–4 e1–5.CrossRefPubMed Alkhairy OK, Rezaei N, Graham RR, et al. RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J Allergy Clin Immunol. 2015;135(5):1380–4 e1–5.CrossRefPubMed
39.
40.
Zurück zum Zitat Lanzi G, Moratto D, Vairo D, Masneri S, Delmonte O, Paganini T, et al. A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J Exp Med. 2012;209(1):29–34.CrossRefPubMedPubMedCentral Lanzi G, Moratto D, Vairo D, Masneri S, Delmonte O, Paganini T, et al. A novel primary human immunodeficiency due to deficiency in the WASP-interacting protein WIP. J Exp Med. 2012;209(1):29–34.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Chae HD, Lee KE, Williams DA, Gu Y. Cross-talk between RhoH and Rac1 in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood. 2008;111(5):2597_605.CrossRefPubMed Chae HD, Lee KE, Williams DA, Gu Y. Cross-talk between RhoH and Rac1 in regulation of actin cytoskeleton and chemotaxis of hematopoietic progenitor cells. Blood. 2008;111(5):2597_605.CrossRefPubMed
43.
Zurück zum Zitat Janssen E, Tohme M, Hedayat M, Leick M, Kumari S, Ramesh N, et al. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest. 2016;126(10):3837–51.CrossRefPubMedPubMedCentral Janssen E, Tohme M, Hedayat M, Leick M, Kumari S, Ramesh N, et al. A DOCK8-WIP-WASp complex links T cell receptors to the actin cytoskeleton. J Clin Invest. 2016;126(10):3837–51.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Notarangelo L, Ochs HD. Wiskott-Aldrich syndrome: a model for defective actin reorganization, cell trafficking and synapse formation. Curr Opin Immunol. 2003;15(5):585–91.CrossRefPubMed Notarangelo L, Ochs HD. Wiskott-Aldrich syndrome: a model for defective actin reorganization, cell trafficking and synapse formation. Curr Opin Immunol. 2003;15(5):585–91.CrossRefPubMed
45.
Zurück zum Zitat Badolato R, Sozzani S, Malacarne F, et al. Monocytes from Wiskott-Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine. J Immunol. 1998;161(2):1026–33.PubMed Badolato R, Sozzani S, Malacarne F, et al. Monocytes from Wiskott-Aldrich patients display reduced chemotaxis and lack of cell polarization in response to monocyte chemoattractant protein-1 and formyl-methionyl-leucyl-phenylalanine. J Immunol. 1998;161(2):1026–33.PubMed
46.
Zurück zum Zitat Brigida I, Zoccolillo M, Cicalese MP, et al. T cell defects in patients with ARPC1B germline mutations account for their combined immunodeficiency. Blood. 2018;132(22):2362–74 Brigida I, Zoccolillo M, Cicalese MP, et al. T cell defects in patients with ARPC1B germline mutations account for their combined immunodeficiency. Blood. 2018;132(22):2362–74
Metadaten
Titel
Human DOCK2 Deficiency: Report of a Novel Mutation and Evidence for Neutrophil Dysfunction
verfasst von
Leen Moens
Mieke Gouwy
Barbara Bosch
Oleksandr Pastukhov
Alejandro Nieto-Patlàn
Ulrich Siler
Giorgia Bucciol
Djalila Mekahli
François Vermeulen
Lars Desmet
Sophie Maebe
Helena Flipts
Anniek Corveleyn
Despina Moshous
Pierre Philippet
Stuart G. Tangye
Bertrand Boisson
Jean-Laurent Casanova
Benoit Florkin
Sofie Struyf
Janine Reichenbach
Jacinta Bustamante
Luigi D. Notarangelo
Isabelle Meyts
Publikationsdatum
05.03.2019
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 3/2019
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-019-00603-w

Weitere Artikel der Ausgabe 3/2019

Journal of Clinical Immunology 3/2019 Zur Ausgabe

CME Review

CAPS and NLRP3

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.