Skip to main content
Erschienen in: Journal of Mammary Gland Biology and Neoplasia 2/2006

01.04.2006

Preclinical Imaging of Mammary Intraepithelial Neoplasia with Positron Emission Tomography

verfasst von: Craig K. Abbey, Alexander D. Borowsky, Jeffery P. Gregg, Robert D. Cardiff, Simon R. Cherry

Erschienen in: Journal of Mammary Gland Biology and Neoplasia | Ausgabe 2/2006

Einloggen, um Zugang zu erhalten

Abstract

Small-animal imaging with positron emission tomography (PET) has become a valuable tool for evaluating preclinical models of breast cancer and other diseases. In this review, we examine a number of issues related to preclinical imaging studies with PET, using transgenic models of ductal carcinoma in situ and metastasis as specific examples. We discuss imaging components such as reconstruction, normalization, and extraction of quantitative parameters. We also analyze the effect of longitudinal correlations on cohort size and present some simple statistical techniques for determining cohort sizes that may be helpful in designing preclinical imaging studies. We describe studies that are greatly facilitated by access to non-invasive imaging data including a study involving multiple endpoints and another investigating metastasis. We conclude with a brief survey of emerging approaches in small-animal PET imaging.
Fußnoten
1
We use a body-centered reference in which the coronal view is perpendicular to the long axis of the body. Some preclinical studies of the brain use a different reference in which this view would be considered a horizontal view.
 
Literatur
1.
Zurück zum Zitat Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM. Ductal carcinoma in situ of the breast. N Engl J Med 2004;350(14):1430–41.PubMedCrossRef Burstein HJ, Polyak K, Wong JS, Lester SC, Kaelin CM. Ductal carcinoma in situ of the breast. N Engl J Med 2004;350(14):1430–41.PubMedCrossRef
2.
Zurück zum Zitat Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6(1):17–32.PubMedCrossRef Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004;6(1):17–32.PubMedCrossRef
3.
Zurück zum Zitat Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003;100(10):5974–9.PubMedCrossRef Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003;100(10):5974–9.PubMedCrossRef
4.
Zurück zum Zitat Kavanaugh CJ, Desai KV, Calvo A, Brown PH, Couldrey C, Lubet R, et al. Pre-clinical applications of transgenic mouse mammary cancer models. Transgenic Research 2002;11:617–33.PubMedCrossRef Kavanaugh CJ, Desai KV, Calvo A, Brown PH, Couldrey C, Lubet R, et al. Pre-clinical applications of transgenic mouse mammary cancer models. Transgenic Research 2002;11:617–33.PubMedCrossRef
5.
Zurück zum Zitat Cardiff RD, Moghanaki D, Jensen RA. Genetically engineered mouse models of mammary intraepithelial neoplasia. J Mammary Gland Biol Neoplasia 2000;5(4):421–37.PubMedCrossRef Cardiff RD, Moghanaki D, Jensen RA. Genetically engineered mouse models of mammary intraepithelial neoplasia. J Mammary Gland Biol Neoplasia 2000;5(4):421–37.PubMedCrossRef
6.
Zurück zum Zitat Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL. Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 1996;37:1042–7.PubMed Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL. Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 1996;37:1042–7.PubMed
7.
Zurück zum Zitat Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widén L. Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab 1991;11:926–31.PubMed Ingvar M, Eriksson L, Rogers GA, Stone-Elander S, Widén L. Rapid feasibility studies of tracers for positron emission tomography: high-resolution PET in small animals with kinetic analysis. J Cereb Blood Flow Metab 1991;11:926–31.PubMed
8.
Zurück zum Zitat Marriott CJ, Cadorette JE, Lecomte R, Scasnar V, Rousseau J, van Lier JE. High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors. J Nucl Med 1994;35:1390–6.PubMed Marriott CJ, Cadorette JE, Lecomte R, Scasnar V, Rousseau J, van Lier JE. High-resolution PET imaging and quantitation of pharmaceutical biodistributions in a small animal using avalanche photodiode detectors. J Nucl Med 1994;35:1390–6.PubMed
9.
Zurück zum Zitat Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997;44:1161–6.CrossRef Cherry SR, Shao Y, Silverman RW, Meadors K, Siegel S, Chatziioannou A, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci 1997;44:1161–6.CrossRef
10.
Zurück zum Zitat Jones T. The imaging science of positron emission tomography. Eur J Nucl Med 1996;23:807–13.PubMedCrossRef Jones T. The imaging science of positron emission tomography. Eur J Nucl Med 1996;23:807–13.PubMedCrossRef
11.
Zurück zum Zitat Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000; 97:9226–33.PubMedCrossRef Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 2000; 97:9226–33.PubMedCrossRef
12.
Zurück zum Zitat Tai YC, Laforest R. Instrumentation aspects of animal PET. Annu Rev Biomed Eng 2005;7:255–85.PubMedCrossRef Tai YC, Laforest R. Instrumentation aspects of animal PET. Annu Rev Biomed Eng 2005;7:255–85.PubMedCrossRef
13.
Zurück zum Zitat Phelps ME, Mazziotta J, Schelbert HR, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven; 1986. Phelps ME, Mazziotta J, Schelbert HR, editors. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven; 1986.
14.
Zurück zum Zitat Wahl RL, editor. Principles and practice of positron emission tomography. Baltimore, Maryland: Williams & Wilkins; 2002. Wahl RL, editor. Principles and practice of positron emission tomography. Baltimore, Maryland: Williams & Wilkins; 2002.
15.
Zurück zum Zitat Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron emission tomography: basic sciences. Berlin Heidelberg New York: Springer; 2005. Bailey DL, Townsend DW, Valk PE, Maisey MN, editors. Positron emission tomography: basic sciences. Berlin Heidelberg New York: Springer; 2005.
16.
Zurück zum Zitat Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: micro-PET and micro-SPECT. Proc Am Thorac Soc 2005;2(6):533–6.PubMedCrossRef Chatziioannou AF. Instrumentation for molecular imaging in preclinical research: micro-PET and micro-SPECT. Proc Am Thorac Soc 2005;2(6):533–6.PubMedCrossRef
17.
Zurück zum Zitat Yang DJ, Kim EE, Inoue T. Targeted molecular imaging in oncology. Ann Nucl Med 2006;20(1):1–11.PubMedCrossRef Yang DJ, Kim EE, Inoue T. Targeted molecular imaging in oncology. Ann Nucl Med 2006;20(1):1–11.PubMedCrossRef
18.
Zurück zum Zitat Seddon BM, Workman P. The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol 2003;76 (Spec no 2):S128–38.PubMedCrossRef Seddon BM, Workman P. The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol 2003;76 (Spec no 2):S128–38.PubMedCrossRef
19.
Zurück zum Zitat Czernin J, Weber WA, Herschman HR. Molecular imaging in the development of cancer therapeutics. Annu Rev Med 2006;57:99–118.PubMedCrossRef Czernin J, Weber WA, Herschman HR. Molecular imaging in the development of cancer therapeutics. Annu Rev Med 2006;57:99–118.PubMedCrossRef
20.
Zurück zum Zitat Dilworth SM. Polyoma virus middle T antigen and its role in identifying cancer-related molecules. Nat Rev Cancer 2002;2(12):951–6.PubMedCrossRef Dilworth SM. Polyoma virus middle T antigen and its role in identifying cancer-related molecules. Nat Rev Cancer 2002;2(12):951–6.PubMedCrossRef
21.
Zurück zum Zitat Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992;12:954–61.PubMed Guy CT, Cardiff RD, Muller WJ. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992;12:954–61.PubMed
22.
Zurück zum Zitat Qiu TH, Chandramouli GV, Hunter KW, Alkharouf NW, Green JE, Liu ET. Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res 2004;64(17):5973–81.PubMedCrossRef Qiu TH, Chandramouli GV, Hunter KW, Alkharouf NW, Green JE, Liu ET. Global expression profiling identifies signatures of tumor virulence in MMTV-PyMT-transgenic mice: correlation to human disease. Cancer Res 2004;64(17):5973–81.PubMedCrossRef
23.
Zurück zum Zitat Maglione JE, McGoldrick ET, Young LJ, Namba R, Gregg JP, Liu L, et al. Polyomavirus middle T-induced mammary intraepithelial neoplasia outgrowths: single origin, divergent evolution, and multiple outcomes. Mol Cancer Ther 2004;3(8):941–53.PubMed Maglione JE, McGoldrick ET, Young LJ, Namba R, Gregg JP, Liu L, et al. Polyomavirus middle T-induced mammary intraepithelial neoplasia outgrowths: single origin, divergent evolution, and multiple outcomes. Mol Cancer Ther 2004;3(8):941–53.PubMed
24.
Zurück zum Zitat Kinahan PE, Rogers JG. Analytic three-dimensional image reconstruction using all detected events. IEEE Trans Nucl Sci 1990;36:964–8.CrossRef Kinahan PE, Rogers JG. Analytic three-dimensional image reconstruction using all detected events. IEEE Trans Nucl Sci 1990;36:964–8.CrossRef
25.
Zurück zum Zitat Lewitt RM, Muehllehner G, Karp JS. Three-dimensional reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 1994;39:321–40.CrossRef Lewitt RM, Muehllehner G, Karp JS. Three-dimensional reconstruction for PET by multi-slice rebinning and axial image filtering. Phys Med Biol 1994;39:321–40.CrossRef
26.
Zurück zum Zitat Xu XL, Liow JS, Strother SC. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography. Med Phys 1993;20(6):1675–84.PubMedCrossRef Xu XL, Liow JS, Strother SC. Iterative algebraic reconstruction algorithms for emission computed tomography: a unified framework and its application to positron emission tomography. Med Phys 1993;20(6):1675–84.PubMedCrossRef
27.
Zurück zum Zitat Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 1998;43:1001–13.PubMedCrossRef Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol 1998;43:1001–13.PubMedCrossRef
28.
Zurück zum Zitat Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy RM, et al. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imag 2000;19(5):507–12.CrossRef Chatziioannou A, Qi J, Moore A, Annala A, Nguyen K, Leahy RM, et al. Comparison of 3-D maximum a posteriori and filtered backprojection algorithms for high-resolution animal imaging with microPET. IEEE Trans Med Imag 2000;19(5):507–12.CrossRef
29.
Zurück zum Zitat Di Chiro G, Brooks RA. PET quantitation: blessing and curse. J Nucl Med 1988;29(9):1603–4.PubMed Di Chiro G, Brooks RA. PET quantitation: blessing and curse. J Nucl Med 1988;29(9):1603–4.PubMed
30.
Zurück zum Zitat Keyes JW, Jr. SUV: standard uptake or silly useless value? J Nucl Med 1995;36(10):1836–9.PubMed Keyes JW, Jr. SUV: standard uptake or silly useless value? J Nucl Med 1995;36(10):1836–9.PubMed
31.
Zurück zum Zitat Coleman RE. Is quantitation necessary for oncological PET studies. Eur J Nucl Med Mol Imaging 2002;29(1):133–5.PubMedCrossRef Coleman RE. Is quantitation necessary for oncological PET studies. Eur J Nucl Med Mol Imaging 2002;29(1):133–5.PubMedCrossRef
32.
Zurück zum Zitat Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993;189(3):847–50.PubMed Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology 1993;189(3):847–50.PubMed
33.
Zurück zum Zitat Toyama H, Ichise M, Liow J-S, Vines DC, Seneca NM, Modell KJ, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31:251–6.PubMedCrossRef Toyama H, Ichise M, Liow J-S, Vines DC, Seneca NM, Modell KJ, et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31:251–6.PubMedCrossRef
34.
Zurück zum Zitat Abbey CK, Borowsky AD, McGoldrick ET, Gregg JP, Maglione JE, Cardiff RD, et al. In vivo positron-emission tomography imaging of progression and transformation in a mouse model of mammary neoplasia. Proc Natl Acad Sci USA 2004;101 (31):11438–43.PubMedCrossRef Abbey CK, Borowsky AD, McGoldrick ET, Gregg JP, Maglione JE, Cardiff RD, et al. In vivo positron-emission tomography imaging of progression and transformation in a mouse model of mammary neoplasia. Proc Natl Acad Sci USA 2004;101 (31):11438–43.PubMedCrossRef
35.
Zurück zum Zitat Abbey CK, Borowsky AD, McGoldrick ET, Gregg JP, Cardiff RD, Cherry, SR. PET Imaging of development and malignant transformation in a mouse model of mammary intraepithelial neoplasia. In: Amini AA, Manduca A, editors. Medical imaging 2005: physiology, function, and structure from medical images, Proc SPIE 2005, vol. 5746, p. 1–9. Abbey CK, Borowsky AD, McGoldrick ET, Gregg JP, Cardiff RD, Cherry, SR. PET Imaging of development and malignant transformation in a mouse model of mammary intraepithelial neoplasia. In: Amini AA, Manduca A, editors. Medical imaging 2005: physiology, function, and structure from medical images, Proc SPIE 2005, vol. 5746, p. 1–9.
36.
Zurück zum Zitat Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of longitudinal data. 2nd ed. Oxford: Oxford University Press; 2002. Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of longitudinal data. 2nd ed. Oxford: Oxford University Press; 2002.
37.
Zurück zum Zitat Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman & Hall; 1993. Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: Chapman & Hall; 1993.
38.
Zurück zum Zitat Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004;4:335–48.PubMedCrossRef Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004;4:335–48.PubMedCrossRef
39.
Zurück zum Zitat Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000;19:6680–6.PubMedCrossRef Hidalgo M, Rowinsky EK. The rapamycin-sensitive signal transduction pathway as a target for cancer therapy. Oncogene 2000;19:6680–6.PubMedCrossRef
40.
Zurück zum Zitat Namba R, Young LJT, Abbey CK, Kim L, Damonte P, Borowsky AD, et al. Rapamycin inhibits growth of premalignant and malignant mammary lesions in a mouse model of DCIS. Clin Cancer Res 2006;12(8):2613–21.PubMedCrossRef Namba R, Young LJT, Abbey CK, Kim L, Damonte P, Borowsky AD, et al. Rapamycin inhibits growth of premalignant and malignant mammary lesions in a mouse model of DCIS. Clin Cancer Res 2006;12(8):2613–21.PubMedCrossRef
41.
Zurück zum Zitat Namba R, Young LJ, Maglione JE, McGoldrick ET, Liu S, Wurz GT, et al. Selective estrogen receptor modulators inhibit growth and progression of premalignant lesions in a mouse model of ductal carcinoma in situ. Breast Cancer Res 2005;7(6):R881–9.PubMedCrossRef Namba R, Young LJ, Maglione JE, McGoldrick ET, Liu S, Wurz GT, et al. Selective estrogen receptor modulators inhibit growth and progression of premalignant lesions in a mouse model of ductal carcinoma in situ. Breast Cancer Res 2005;7(6):R881–9.PubMedCrossRef
42.
Zurück zum Zitat Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell 2002;108:135–44.PubMedCrossRef Van Dyke T, Jacks T. Cancer modeling in the modern era: progress and challenges. Cell 2002;108:135–44.PubMedCrossRef
43.
Zurück zum Zitat Borowsky AD, Namba R, Young LJ, Hunter KW, Hodgson JG, Tepper CG, et al. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis 2005;22(1):47–59.PubMedCrossRef Borowsky AD, Namba R, Young LJ, Hunter KW, Hodgson JG, Tepper CG, et al. Syngeneic mouse mammary carcinoma cell lines: two closely related cell lines with divergent metastatic behavior. Clin Exp Metastasis 2005;22(1):47–59.PubMedCrossRef
44.
Zurück zum Zitat Cheung ATW, Young LJT, Chen PCY, Chao CY, Ndoye A, Barry PA, et al. Microcirculation and metastasis in a mouse mammary tumor model system. Int J Oncol 1997;129:507–16. Cheung ATW, Young LJT, Chen PCY, Chao CY, Ndoye A, Barry PA, et al. Microcirculation and metastasis in a mouse mammary tumor model system. Int J Oncol 1997;129:507–16.
45.
Zurück zum Zitat Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–6.PubMedCrossRef Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 1998;4(11):1334–6.PubMedCrossRef
46.
Zurück zum Zitat Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, et al. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63(13):3791–8.PubMed Barthel H, Cleij MC, Collingridge DR, Hutchinson OC, Osman S, He Q, et al. 3′-deoxy-3′-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 2003;63(13):3791–8.PubMed
47.
Zurück zum Zitat Waldherr C, Mellinghoff IK, Tran C, Halpern BS, Rozengurt N, Safaei A, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 2005;46(1):114–20.PubMed Waldherr C, Mellinghoff IK, Tran C, Halpern BS, Rozengurt N, Safaei A, et al. Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 2005;46(1):114–20.PubMed
48.
Zurück zum Zitat Kubota K, Tada M, Yamada S, Hori K, Saito S, Iwata R, et al. Comparison of the distribution of fluorine-18 fluoromisonidazole, deoxyglucose and methionine in tumour tissue. Eur J Nucl Med 1999;26(7):750–7.PubMedCrossRef Kubota K, Tada M, Yamada S, Hori K, Saito S, Iwata R, et al. Comparison of the distribution of fluorine-18 fluoromisonidazole, deoxyglucose and methionine in tumour tissue. Eur J Nucl Med 1999;26(7):750–7.PubMedCrossRef
49.
Zurück zum Zitat Bentzen L, Keiding S, Horsman MR, Gronroos T, Hansen SB, Overgaard J. Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol 2002;41(3):304–12.PubMedCrossRef Bentzen L, Keiding S, Horsman MR, Gronroos T, Hansen SB, Overgaard J. Assessment of hypoxia in experimental mice tumours by [18F]fluoromisonidazole PET and pO2 electrode measurements. Influence of tumour volume and carbogen breathing. Acta Oncol 2002;41(3):304–12.PubMedCrossRef
50.
Zurück zum Zitat Wyss MT, Honer M, Schubiger PA, Ametamey SM. NanoPET imaging of [(18)F]fluoromisonidazole uptake in experimental mouse tumours. Eur J Nucl Med Mol Imaging 2006;33(3):311–8.PubMedCrossRef Wyss MT, Honer M, Schubiger PA, Ametamey SM. NanoPET imaging of [(18)F]fluoromisonidazole uptake in experimental mouse tumours. Eur J Nucl Med Mol Imaging 2006;33(3):311–8.PubMedCrossRef
51.
Zurück zum Zitat Lewis MR, Wang M, Axworthy DB, Theodore LJ, Mallet RW, Fritzberg AR, et al. In vivo evaluation of pretargeted 64Cu for tumor imaging and therapy. J Nucl Med 2003;44(8):1284–92.PubMed Lewis MR, Wang M, Axworthy DB, Theodore LJ, Mallet RW, Fritzberg AR, et al. In vivo evaluation of pretargeted 64Cu for tumor imaging and therapy. J Nucl Med 2003;44(8):1284–92.PubMed
52.
53.
Zurück zum Zitat Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol 2001;11:1968–74.PubMedCrossRef Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol 2001;11:1968–74.PubMedCrossRef
54.
Zurück zum Zitat Goertzen AL, Meadors AK, Silverman RW, Cherry SR. Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 2002;47(24):4315–28.PubMedCrossRef Goertzen AL, Meadors AK, Silverman RW, Cherry SR. Simultaneous molecular and anatomical imaging of the mouse in vivo. Phys Med Biol 2002;47(24):4315–28.PubMedCrossRef
55.
Zurück zum Zitat Del Guerra A, Belcari N. Advances in animal PET scanners. Q J Nucl Med 2002;46(1):35–47.PubMed Del Guerra A, Belcari N. Advances in animal PET scanners. Q J Nucl Med 2002;46(1):35–47.PubMed
56.
Zurück zum Zitat Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42(10):1965–70.PubMedCrossRef Shao Y, Cherry SR, Farahani K, Meadors K, Siegel S, Silverman RW, et al. Simultaneous PET and MR imaging. Phys Med Biol 1997;42(10):1965–70.PubMedCrossRef
57.
Zurück zum Zitat Garlick PB, Marsden PK, Cave AC, Parkes HG, Slates R, Shao Y, et al. PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed 1997;10(3):138–42.PubMedCrossRef Garlick PB, Marsden PK, Cave AC, Parkes HG, Slates R, Shao Y, et al. PET and NMR dual acquisition (PANDA): applications to isolated, perfused rat hearts. NMR Biomed 1997;10(3):138–42.PubMedCrossRef
58.
Zurück zum Zitat Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of a LSO-APD Detector in a 7 Tesla MRI Scanner for simultaneous PET-MR imaging. J Nucl Med 2006;47(4):639–47.PubMed Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of a LSO-APD Detector in a 7 Tesla MRI Scanner for simultaneous PET-MR imaging. J Nucl Med 2006;47(4):639–47.PubMed
59.
Zurück zum Zitat Schoder H, Erdi YE, Larson SM, Yeund HWD. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003;30:1419–37.PubMedCrossRef Schoder H, Erdi YE, Larson SM, Yeund HWD. PET/CT: a new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 2003;30:1419–37.PubMedCrossRef
60.
Zurück zum Zitat Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol 2006;79(937):32–6.PubMedCrossRef Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol 2006;79(937):32–6.PubMedCrossRef
Metadaten
Titel
Preclinical Imaging of Mammary Intraepithelial Neoplasia with Positron Emission Tomography
verfasst von
Craig K. Abbey
Alexander D. Borowsky
Jeffery P. Gregg
Robert D. Cardiff
Simon R. Cherry
Publikationsdatum
01.04.2006
Erschienen in
Journal of Mammary Gland Biology and Neoplasia / Ausgabe 2/2006
Print ISSN: 1083-3021
Elektronische ISSN: 1573-7039
DOI
https://doi.org/10.1007/s10911-006-9020-6

Weitere Artikel der Ausgabe 2/2006

Journal of Mammary Gland Biology and Neoplasia 2/2006 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.