Skip to main content
Erschienen in: Journal of Medical Systems 9/2018

01.09.2018 | Systems-Level Quality Improvement

Data Mining Algorithms and Techniques in Mental Health: A Systematic Review

verfasst von: Susel Góngora Alonso, Isabel de la Torre-Díez, Sofiane Hamrioui, Miguel López-Coronado, Diego Calvo Barreno, Lola Morón Nozaleda, Manuel Franco

Erschienen in: Journal of Medical Systems | Ausgabe 9/2018

Einloggen, um Zugang zu erhalten

Abstract

Data Mining in medicine is an emerging field of great importance to provide a prognosis and deeper understanding of disease classification, specifically in Mental Health areas. The main objective of this paper is to present a review of the existing research works in the literature, referring to the techniques and algorithms of Data Mining in Mental Health, specifically in the most prevalent diseases such as: Dementia, Alzheimer, Schizophrenia and Depression. Academic databases that were used to perform the searches are Google Scholar, IEEE Xplore, PubMed, Science Direct, Scopus and Web of Science, taking into account as date of publication the last 10 years, from 2008 to the present. Several search criteria were established such as ‘techniques’ AND ‘Data Mining’ AND ‘Mental Health’, ‘algorithms’ AND ‘Data Mining’ AND ‘dementia’ AND ‘schizophrenia’ AND ‘depression’, etc. selecting the papers of greatest interest. A total of 211 articles were found related to techniques and algorithms of Data Mining applied to the main Mental Health diseases. 72 articles have been identified as relevant works of which 32% are Alzheimer’s, 22% dementia, 24% depression, 14% schizophrenia and 8% bipolar disorders. Many of the papers show the prediction of risk factors in these diseases. From the review of the research articles analyzed, it can be said that use of Data Mining techniques applied to diseases such as dementia, schizophrenia, depression, etc. can be of great help to the clinical decision, diagnosis prediction and improve the patient’s quality of life.
Literatur
1.
Zurück zum Zitat Dhaka, P., and Johari, R., Big data application: Study and archival of mental health data, using MongoDB. Int. Conf. Electr. Electron. Optim. Tech.:3228–3232, 2016. Dhaka, P., and Johari, R., Big data application: Study and archival of mental health data, using MongoDB. Int. Conf. Electr. Electron. Optim. Tech.:3228–3232, 2016.
2.
Zurück zum Zitat Dipnall, J. F., Pasco, J. A., Berk, M., Williams, L. J., Dodd, S., Jacka, F. N. et al., Fusing data mining, machine learning and traditional statistics to detect biomarkers associated with depression. PLoS One. 11(2):1–23, 2016.CrossRef Dipnall, J. F., Pasco, J. A., Berk, M., Williams, L. J., Dodd, S., Jacka, F. N. et al., Fusing data mining, machine learning and traditional statistics to detect biomarkers associated with depression. PLoS One. 11(2):1–23, 2016.CrossRef
3.
Zurück zum Zitat Pirooznia, M., Seifuddin, F., Judy, J., Mahon, P., Potash, J., and Zandi, P., Data mining approaches for genome-wide asscociation of mood disorders. Psychiatr. Genet. 22(2):55–61, 2012.CrossRefPubMedPubMedCentral Pirooznia, M., Seifuddin, F., Judy, J., Mahon, P., Potash, J., and Zandi, P., Data mining approaches for genome-wide asscociation of mood disorders. Psychiatr. Genet. 22(2):55–61, 2012.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Ni, H., Yang, X., Fang, C., Guo, Y., Xu, M., and He, Y., Data mining-based study on sub-mentally healthy state among residents in eight provinces and cities in China. J. Tradit. Chinese Med. 34(4):511–517, 2014.CrossRef Ni, H., Yang, X., Fang, C., Guo, Y., Xu, M., and He, Y., Data mining-based study on sub-mentally healthy state among residents in eight provinces and cities in China. J. Tradit. Chinese Med. 34(4):511–517, 2014.CrossRef
6.
Zurück zum Zitat Mathew, J., Mekkayil, L., Ramasangu, H., Karthikeyan, B. R., and Manjunath, A. G., Robust algorithm for early detection of Alzheimer’s disease using multiple feature extractions. IEEE Annu. India Conf. 2016:1–6, 2016. Mathew, J., Mekkayil, L., Ramasangu, H., Karthikeyan, B. R., and Manjunath, A. G., Robust algorithm for early detection of Alzheimer’s disease using multiple feature extractions. IEEE Annu. India Conf. 2016:1–6, 2016.
7.
Zurück zum Zitat Bhagya Shree, S. R., and Sheshadri, H. S., An initial investigation in the diagnosis of Alzheimer’s disease using various classification techniques. 2014 IEEE Int Conf Comput Intell Comput Res. 2014;1–5. Bhagya Shree, S. R., and Sheshadri, H. S., An initial investigation in the diagnosis of Alzheimer’s disease using various classification techniques. 2014 IEEE Int Conf Comput Intell Comput Res. 2014;1–5.
8.
Zurück zum Zitat Qu, X., Yuan, B., and Liu, W., A predictive model for identifying possible MCI to AD Conversions in the ADNI database. 2009 2nd Int. Symp. Knowl. Acquis. Model KAM 3:102–105, 2009. Qu, X., Yuan, B., and Liu, W., A predictive model for identifying possible MCI to AD Conversions in the ADNI database. 2009 2nd Int. Symp. Knowl. Acquis. Model KAM 3:102–105, 2009.
9.
Zurück zum Zitat Gironi M, Borgiani B, Farina E, Mariani E, Cursano C, Alberoni M, et al. A global immune deficit in Alzheimer’s disease and mild cognitive impairment disclosed by a novel data mining process. J. Alzheimers Dis. 2015;43(4):1199–1213 Gironi M, Borgiani B, Farina E, Mariani E, Cursano C, Alberoni M, et al. A global immune deficit in Alzheimer’s disease and mild cognitive impairment disclosed by a novel data mining process. J. Alzheimers Dis. 2015;43(4):1199–1213
10.
Zurück zum Zitat Yoon, S., Taha, B., and Bakken, S., Using a data mining approach to discover behavior correlates of chronic disease: A case study of depression. Stud. Health Technol. Inform. 201:71–78, 2014.PubMedPubMedCentral Yoon, S., Taha, B., and Bakken, S., Using a data mining approach to discover behavior correlates of chronic disease: A case study of depression. Stud. Health Technol. Inform. 201:71–78, 2014.PubMedPubMedCentral
11.
Zurück zum Zitat Lee, C., Lam, C. P., and Masek, M., Rough-fuzzy hybrid approach for identification of bio-markers and classification on Alzheimer’s disease data. Proc. 2011 11th IEEE Int Conf Bioinforma Bioeng BIBE. ;84–91, 2011. Lee, C., Lam, C. P., and Masek, M., Rough-fuzzy hybrid approach for identification of bio-markers and classification on Alzheimer’s disease data. Proc. 2011 11th IEEE Int Conf Bioinforma Bioeng BIBE. ;84–91, 2011.
12.
Zurück zum Zitat Alonso, S. G., de la Torre Díez, I., Rodrigues, J. J. P. C., Hamrioui, S., and López-Coronado, M., A systematic review of techniques and sources of big data in the healthcare sector. J. Med. Syst. 41(11):183, 2017.CrossRefPubMed Alonso, S. G., de la Torre Díez, I., Rodrigues, J. J. P. C., Hamrioui, S., and López-Coronado, M., A systematic review of techniques and sources of big data in the healthcare sector. J. Med. Syst. 41(11):183, 2017.CrossRefPubMed
13.
Zurück zum Zitat Khan, A., and Usman, M., Early diagnosis of Alzheimer’s disease using machine learning techniques. 2015 7th Int Jt Conf. Knowl. Discov. Knowl. Eng. Knowl. Manag. (IC3K) 1:380–387, 2015. Khan, A., and Usman, M., Early diagnosis of Alzheimer’s disease using machine learning techniques. 2015 7th Int Jt Conf. Knowl. Discov. Knowl. Eng. Knowl. Manag. (IC3K) 1:380–387, 2015.
14.
Zurück zum Zitat Wongkoblap, A., Vadillo, M. A., and Curcin, V., Researching mental health disorders in the era of social media: Systematic review. J. Med. Internet Res. 19(6):e228, 2017.CrossRefPubMedPubMedCentral Wongkoblap, A., Vadillo, M. A., and Curcin, V., Researching mental health disorders in the era of social media: Systematic review. J. Med. Internet Res. 19(6):e228, 2017.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Yuan, C., Data mining techniques with its application to the dataset of mental health of college students. IEEE Work Adv. Res. Technol. Ind. Appl. WARTIA. 2014:391–393, 2014. Yuan, C., Data mining techniques with its application to the dataset of mental health of college students. IEEE Work Adv. Res. Technol. Ind. Appl. WARTIA. 2014:391–393, 2014.
16.
Zurück zum Zitat Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J. F. et al., Data mining in healthcare and biomedicine: A survey of the literature. J. Med. Syst. 36(4):2431–2448, 2012.CrossRefPubMed Yoo, I., Alafaireet, P., Marinov, M., Pena-Hernandez, K., Gopidi, R., Chang, J. F. et al., Data mining in healthcare and biomedicine: A survey of the literature. J. Med. Syst. 36(4):2431–2448, 2012.CrossRefPubMed
17.
Zurück zum Zitat Sarraf, S., and Tofighi, G., Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. 2016 Future Technologies Conference (FTC), IEEE. 816–820, 2016. Sarraf, S., and Tofighi, G., Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data. 2016 Future Technologies Conference (FTC), IEEE. 816–820, 2016.
18.
Zurück zum Zitat Fiscon, G., Weitschek, E., Felici, G., Bertolazzi, P., De Salvo, S., and Bramanti, P, et al., Alzheimer’s disease patients classification through EEG signals processing. 2014 IEEE Symp Comput Intell Data Min (CIDM).;105–112, 2014. Fiscon, G., Weitschek, E., Felici, G., Bertolazzi, P., De Salvo, S., and Bramanti, P, et al., Alzheimer’s disease patients classification through EEG signals processing. 2014 IEEE Symp Comput Intell Data Min (CIDM).;105–112, 2014.
19.
Zurück zum Zitat Pachange S, Joglekar B, Kulkarni P. An ensemble classifier approach for disease diagnosis using random Forest. 2015 Annu. IEEE Ind. Conf.;1–5, 2015. Pachange S, Joglekar B, Kulkarni P. An ensemble classifier approach for disease diagnosis using random Forest. 2015 Annu. IEEE Ind. Conf.;1–5, 2015.
20.
Zurück zum Zitat Le, Q. B., Shafiq, O., and Alhajj, R., Analyzing Alzheimer’s disease gene expression dataset using clustering and association rule mining. Proc. 2014 IEEE 15th Int Conf Inf Reuse Integr IEEE IRI. ;283–290, 2014. Le, Q. B., Shafiq, O., and Alhajj, R., Analyzing Alzheimer’s disease gene expression dataset using clustering and association rule mining. Proc. 2014 IEEE 15th Int Conf Inf Reuse Integr IEEE IRI. ;283–290, 2014.
21.
Zurück zum Zitat Moon, S., Choi, B., An, J., and Yoon, T., Constructing a sorting machine for degenerative cerebropathia. Int. Conf. Adv. Commun. Technol. ICACT.;800–804, 2017. Moon, S., Choi, B., An, J., and Yoon, T., Constructing a sorting machine for degenerative cerebropathia. Int. Conf. Adv. Commun. Technol. ICACT.;800–804, 2017.
22.
Zurück zum Zitat Hadzic M, Hadzic F, Dillon T. Tree mining in mental health domain. Proc. 41st Annu. Hawaii Int. Conf. Syst. Sci. ;1–8, 2008. Hadzic M, Hadzic F, Dillon T. Tree mining in mental health domain. Proc. 41st Annu. Hawaii Int. Conf. Syst. Sci. ;1–8, 2008.
23.
Zurück zum Zitat Simon, G. J., Li, P. W., Jack, Jr. C. R., and Vemuri, P., Understanding atrophy trajectories in Alzheimer’s disease using association rules on MRI images. Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. ;369–376, 2011. Simon, G. J., Li, P. W., Jack, Jr. C. R., and Vemuri, P., Understanding atrophy trajectories in Alzheimer’s disease using association rules on MRI images. Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. ;369–376, 2011.
24.
Zurück zum Zitat Payandeh, S., Recursive Bayesian tracking for smart elderly living. 7th IEEE Annu Inf Technol Electron Mob Commun Conf IEEE IEMCON. ;1–7, 2016. Payandeh, S., Recursive Bayesian tracking for smart elderly living. 7th IEEE Annu Inf Technol Electron Mob Commun Conf IEEE IEMCON. ;1–7, 2016.
25.
Zurück zum Zitat Chiang, H.-S., and Pao, S.-C., An EEG-based fuzzy probability model for early diagnosis of Alzheimer’s disease. J. Med. Syst. 40(5):125, 2016.CrossRefPubMed Chiang, H.-S., and Pao, S.-C., An EEG-based fuzzy probability model for early diagnosis of Alzheimer’s disease. J. Med. Syst. 40(5):125, 2016.CrossRefPubMed
26.
Zurück zum Zitat Ertek, G., Tokdil, B., and Günaydın, İ., Risk factors and identifiers for Alzheimer’s disease: A data mining analysis. Ind. Conf. Data Min.;1–11, 2014. Ertek, G., Tokdil, B., and Günaydın, İ., Risk factors and identifiers for Alzheimer’s disease: A data mining analysis. Ind. Conf. Data Min.;1–11, 2014.
27.
Zurück zum Zitat Joshi, S., Shenoy, D, G.G. VS, Rrashmi, P. L., Venugopal, K. R., and Patnaik, L. M., Classification of Alzheimer’s disease and Parkinson’s disease by using machine learning and neural network methods. 2010 Second Int. Conf. Mach. Learn. Comput. ;218–222, 2010. Joshi, S., Shenoy, D, G.G. VS, Rrashmi, P. L., Venugopal, K. R., and Patnaik, L. M., Classification of Alzheimer’s disease and Parkinson’s disease by using machine learning and neural network methods. 2010 Second Int. Conf. Mach. Learn. Comput. ;218–222, 2010.
28.
Zurück zum Zitat Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J. et al., Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. Neuroimage. 50(1):162–174, 2010.CrossRefPubMedPubMedCentral Plant, C., Teipel, S. J., Oswald, A., Böhm, C., Meindl, T., Mourao-Miranda, J. et al., Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer’s disease. Neuroimage. 50(1):162–174, 2010.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Chaves, R., Górriz, J. M., Ramírez, J., Illn, I. A., Salas-Gonzalez, D., and Gómez-Río, M., Efficient mining of association rules for the early diagnosis of Alzheimer’s disease. Phys. Med. Biol. 56(18):6047–6063, 2011.CrossRefPubMed Chaves, R., Górriz, J. M., Ramírez, J., Illn, I. A., Salas-Gonzalez, D., and Gómez-Río, M., Efficient mining of association rules for the early diagnosis of Alzheimer’s disease. Phys. Med. Biol. 56(18):6047–6063, 2011.CrossRefPubMed
30.
Zurück zum Zitat Plant C, Sorg C, Riedl V, Wohlschläger A. Homogeneity-based feature extraction for classification of early-stage alzheimer’s disease from functional magnetic resonance images. Proc. 2011 Work Data Min. Med. Healthc - DMMH. 2011;33–41, 2011. Plant C, Sorg C, Riedl V, Wohlschläger A. Homogeneity-based feature extraction for classification of early-stage alzheimer’s disease from functional magnetic resonance images. Proc. 2011 Work Data Min. Med. Healthc - DMMH. 2011;33–41, 2011.
31.
Zurück zum Zitat Al-Dlaeen, D., and Alashqur, A., Using decision tree classification to assist in the prediction of Alzheimer’s disease. 2014 6th Int. Conf. Comput. Sci. Inf. Technol. (CSIT).;122–126, 2014. Al-Dlaeen, D., and Alashqur, A., Using decision tree classification to assist in the prediction of Alzheimer’s disease. 2014 6th Int. Conf. Comput. Sci. Inf. Technol. (CSIT).;122–126, 2014.
32.
Zurück zum Zitat Zhang, Y., Wang, S., and Dong, Z., Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagn. Res. 144:171–184, 2014.CrossRef Zhang, Y., Wang, S., and Dong, Z., Classification of Alzheimer disease based on structural magnetic resonance imaging by kernel support vector machine decision tree. Prog. Electromagn. Res. 144:171–184, 2014.CrossRef
33.
Zurück zum Zitat Sheshadri, H. S. , Shree, S. R. B., and Krishna, M., Diagnosis of Alzheimer’s disease employing neuropsychological and classification techniques. Proc 2015 5th Int. Conf. IT Converg. Sec. ICITCS. ;1–6, 2015. Sheshadri, H. S. , Shree, S. R. B., and Krishna, M., Diagnosis of Alzheimer’s disease employing neuropsychological and classification techniques. Proc 2015 5th Int. Conf. IT Converg. Sec. ICITCS. ;1–6, 2015.
34.
Zurück zum Zitat Martínez-Ballesteros, M., García-Heredia, J. M., Nepomuceno-Chamorro, I. A., and Riquelme-Santos, J. C., Machine learning techniques to discover genes with potential prognosis role in Alzheimer’s disease using different biological sources. Inf. Fusion. 36:114–129, 2017.CrossRef Martínez-Ballesteros, M., García-Heredia, J. M., Nepomuceno-Chamorro, I. A., and Riquelme-Santos, J. C., Machine learning techniques to discover genes with potential prognosis role in Alzheimer’s disease using different biological sources. Inf. Fusion. 36:114–129, 2017.CrossRef
35.
Zurück zum Zitat Tejeswinee, K., Shomona, G. J., and Athilakshmi, R., Feature selection techniques for prediction of neuro-degenerative disorders: A case-study with Alzheimer’s and Parkinson’s disease. Proc. Comput. Sci. 115:188–194, 2017.CrossRef Tejeswinee, K., Shomona, G. J., and Athilakshmi, R., Feature selection techniques for prediction of neuro-degenerative disorders: A case-study with Alzheimer’s and Parkinson’s disease. Proc. Comput. Sci. 115:188–194, 2017.CrossRef
36.
Zurück zum Zitat Jacob SG, Athilakshmi R. Extraction of protein sequence features for prediction of neuro-degenerative brain disorders: Pioneering the CGAP database. Proc Int Conf Informatics Anal - ICIA-16.;30, 2016. Jacob SG, Athilakshmi R. Extraction of protein sequence features for prediction of neuro-degenerative brain disorders: Pioneering the CGAP database. Proc Int Conf Informatics Anal - ICIA-16.;30, 2016.
37.
Zurück zum Zitat Aditya, C. R., and Pande, M. B. S., Devising an interpretable calibrated scale to quantitatively assess the dementia stage of subjects with alzheimer’s disease: A machine learning approach. Inform. Med. Unlocked. 6:28–35, 2017.CrossRef Aditya, C. R., and Pande, M. B. S., Devising an interpretable calibrated scale to quantitatively assess the dementia stage of subjects with alzheimer’s disease: A machine learning approach. Inform. Med. Unlocked. 6:28–35, 2017.CrossRef
38.
Zurück zum Zitat Byeon, H. A., Prediction model for mild cognitive impairment using random forests. Int. J. Adv. Comput. Sci. Appl. 6(12):8–12, 2015. Byeon, H. A., Prediction model for mild cognitive impairment using random forests. Int. J. Adv. Comput. Sci. Appl. 6(12):8–12, 2015.
39.
Zurück zum Zitat Fernández-Llatas, C., García-Gomez, J. M., Vicente, J., Naranjo, J. C., Robles, M., and Benedí, J. M., et al., Behaviour patterns detection for persuasive design in nursing homes to help dementia patients. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS.;6413–6417, 2011. Fernández-Llatas, C., García-Gomez, J. M., Vicente, J., Naranjo, J. C., Robles, M., and Benedí, J. M., et al., Behaviour patterns detection for persuasive design in nursing homes to help dementia patients. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS.;6413–6417, 2011.
40.
Zurück zum Zitat Wen, L., Bewley, M., Eberl, S., Fulham, M., and Feng, D. D., Classification of dementia from fdg-pet parametric images using data mining. 5th IEEE Int. Symp. Biomed. Imaging From Nano to Macro, ISBI. ;412–415, 2008. Wen, L., Bewley, M., Eberl, S., Fulham, M., and Feng, D. D., Classification of dementia from fdg-pet parametric images using data mining. 5th IEEE Int. Symp. Biomed. Imaging From Nano to Macro, ISBI. ;412–415, 2008.
41.
Zurück zum Zitat Zhang, S., Mcclean, S., Nugent, C., Neill, S. O., Donnelly, M., and Galway, L., et al., Prediction of assistive technology adoption for people with dementia. Int. Conf. Heal. Inf. Sci. ;160–171, 2013. Zhang, S., Mcclean, S., Nugent, C., Neill, S. O., Donnelly, M., and Galway, L., et al., Prediction of assistive technology adoption for people with dementia. Int. Conf. Heal. Inf. Sci. ;160–171, 2013.
42.
Zurück zum Zitat Zhang S, McClean SI, Nugent CD, Donnelly MP, Galway L, Scotney BW, et al. A predictive model for assistive technology adoption for people with dementia. IEEE J. Biomed. Heal. Inform. 2014;18(1):375–383. Zhang S, McClean SI, Nugent CD, Donnelly MP, Galway L, Scotney BW, et al. A predictive model for assistive technology adoption for people with dementia. IEEE J. Biomed. Heal. Inform. 2014;18(1):375–383.
43.
Zurück zum Zitat Bang, S., Son, S., Roh, H., Lee, J., Bae, S., Lee, K. et al., Quad-phased data mining modeling for dementia diagnosis. BMC Med. Inform. Decis. Mak. 17(1):60, 2017.CrossRefPubMedPubMedCentral Bang, S., Son, S., Roh, H., Lee, J., Bae, S., Lee, K. et al., Quad-phased data mining modeling for dementia diagnosis. BMC Med. Inform. Decis. Mak. 17(1):60, 2017.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Joshi, S., Shenoy, P. D., Venugopal, K. R., and Patnaik, L. M., Evaluation of different stages of dementia employing neuropsychological and machine learning techniques. BT - 2009 1st Int. Conf. Adv. Comput. ICAC. ;154–160, 2009. Joshi, S., Shenoy, P. D., Venugopal, K. R., and Patnaik, L. M., Evaluation of different stages of dementia employing neuropsychological and machine learning techniques. BT - 2009 1st Int. Conf. Adv. Comput. ICAC. ;154–160, 2009.
45.
Zurück zum Zitat Zanin, M., Sousa, P., Papo, D., Bajo, R., García-Prieto, J., Del Pozo, F. et al., Optimizing fun network representation of multivariate time series. Sci Rep. 2:630, 2012 1.CrossRefPubMedPubMedCentral Zanin, M., Sousa, P., Papo, D., Bajo, R., García-Prieto, J., Del Pozo, F. et al., Optimizing fun network representation of multivariate time series. Sci Rep. 2:630, 2012 1.CrossRefPubMedPubMedCentral
46.
Zurück zum Zitat Yang, S., Zhou. P., Duan, K., Hossain, M. S., and Alhamid, M. F., emHealth: Towards emotion health through depression prediction and intelligent health recommender system. Mob. Netw. Appl.;1–11, 2017. Yang, S., Zhou. P., Duan, K., Hossain, M. S., and Alhamid, M. F., emHealth: Towards emotion health through depression prediction and intelligent health recommender system. Mob. Netw. Appl.;1–11, 2017.
47.
Zurück zum Zitat Jena, L., and Kamila, N. K., A model for prediction of human depression using Apriori algorithm. 2014 Int. Conf. Inf. Technol. ;240–244, 2014. Jena, L., and Kamila, N. K., A model for prediction of human depression using Apriori algorithm. 2014 Int. Conf. Inf. Technol. ;240–244, 2014.
48.
Zurück zum Zitat Jung, Y., and Yoon, Y. I., Multi-level assessment model for wellness service based on human mental stress level. Multimed. Tools Appl. 76(9):11305–11317, 2017.CrossRef Jung, Y., and Yoon, Y. I., Multi-level assessment model for wellness service based on human mental stress level. Multimed. Tools Appl. 76(9):11305–11317, 2017.CrossRef
49.
Zurück zum Zitat Morales, S., Barros, J., Echávarri, O., García, F., Osses, A., Moya, C. et al., Acute mental discomfort associated with suicide behavior in a clinical sample of patients with affective disorders: Ascertaining critical variables using artificial intelligence tools. Front. Psychiatr. 8:7, 2017. Morales, S., Barros, J., Echávarri, O., García, F., Osses, A., Moya, C. et al., Acute mental discomfort associated with suicide behavior in a clinical sample of patients with affective disorders: Ascertaining critical variables using artificial intelligence tools. Front. Psychiatr. 8:7, 2017.
50.
Zurück zum Zitat Mohammadi, M., Al-Azab, F., Raahemi, B., Richards, G., Jaworska, N., Smith, D. et al., Data mining EEG signals in depression for their diagnostic value. BMC Med. Inform. Decis. Mak. 15(1):108, 2015.CrossRefPubMedPubMedCentral Mohammadi, M., Al-Azab, F., Raahemi, B., Richards, G., Jaworska, N., Smith, D. et al., Data mining EEG signals in depression for their diagnostic value. BMC Med. Inform. Decis. Mak. 15(1):108, 2015.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Chang YS, Hung WC, Juang TY. Depression diagnosis based on ontologies and bayesian networks. Proc - 2013 IEEE Int. Conf. Syst. Man., Cybern. SMC. ;3452–3457, 2013. Chang YS, Hung WC, Juang TY. Depression diagnosis based on ontologies and bayesian networks. Proc - 2013 IEEE Int. Conf. Syst. Man., Cybern. SMC. ;3452–3457, 2013.
52.
Zurück zum Zitat Thanathamathee, P., Boosting with feature selection technique for screening and predicting adolescents depression. 2014 4th Int Conf Digit Inf Commun Technol Its Appl DICTAP. ;23–27, 2014. Thanathamathee, P., Boosting with feature selection technique for screening and predicting adolescents depression. 2014 4th Int Conf Digit Inf Commun Technol Its Appl DICTAP. ;23–27, 2014.
53.
Zurück zum Zitat Ghafoor, Y., Huang, Y. P., and Liu, S. I., An intelligent approach to discovering common symptoms among depressed patients. Soft. Comput. 19(4):819–827, 2015.CrossRef Ghafoor, Y., Huang, Y. P., and Liu, S. I., An intelligent approach to discovering common symptoms among depressed patients. Soft. Comput. 19(4):819–827, 2015.CrossRef
54.
Zurück zum Zitat Hou, Y., Xu, J., Huang, Y, and Ma, X., A big data application to predict depression in the university based on the reading habits. 2016 3rd Int. Conf. Syst. Inform., ICSAI. ;1085–1089, 2016. Hou, Y., Xu, J., Huang, Y, and Ma, X., A big data application to predict depression in the university based on the reading habits. 2016 3rd Int. Conf. Syst. Inform., ICSAI. ;1085–1089, 2016.
55.
Zurück zum Zitat Husain, W., Xin, L. K., Rashid, N. A., and Jothi, N., Predicting generalized anxiety disorder among women using random forest approach. 2016 3rd Int Conf Comput Inf Sci. ;37–42, 2016. Husain, W., Xin, L. K., Rashid, N. A., and Jothi, N., Predicting generalized anxiety disorder among women using random forest approach. 2016 3rd Int Conf Comput Inf Sci. ;37–42, 2016.
56.
Zurück zum Zitat Li, X., Hu, B., Sun, S., and Cai, H., EEG-based mild depressive detection using feature selection methods and classifiers. Comput. Methods Programs Biomed. 136:151–161, 2016.CrossRefPubMed Li, X., Hu, B., Sun, S., and Cai, H., EEG-based mild depressive detection using feature selection methods and classifiers. Comput. Methods Programs Biomed. 136:151–161, 2016.CrossRefPubMed
57.
Zurück zum Zitat Nie, Z., Gong, P., and Ye, J., Predict risk of relapse for patients with multiple stages of treatment of depression. Proc. 22Nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.;1795–1804, 2016. Nie, Z., Gong, P., and Ye, J., Predict risk of relapse for patients with multiple stages of treatment of depression. Proc. 22Nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.;1795–1804, 2016.
58.
Zurück zum Zitat Spyrou, I. M., Frantzidis, C., Bratsas, C., Antoniou, I., and Bamidis, P. D., Geriatric depression symptoms coexisting with cognitive decline: A comparison of classification methodologies. Biomed. Sign. Process Contrl. 25:118–129, 2016.CrossRef Spyrou, I. M., Frantzidis, C., Bratsas, C., Antoniou, I., and Bamidis, P. D., Geriatric depression symptoms coexisting with cognitive decline: A comparison of classification methodologies. Biomed. Sign. Process Contrl. 25:118–129, 2016.CrossRef
59.
Zurück zum Zitat Kim, J. Y., Liu, N., Tan, H. X., and Chu, C. H., Unobtrusive monitoring to detect depression for elderly with chronic illnesses. IEEE Sens. J. 17(17):5694–5704, 2017.CrossRef Kim, J. Y., Liu, N., Tan, H. X., and Chu, C. H., Unobtrusive monitoring to detect depression for elderly with chronic illnesses. IEEE Sens. J. 17(17):5694–5704, 2017.CrossRef
60.
Zurück zum Zitat D’monte, S., and Panchal, D., Data mining approach for diagnose of anxiety disorder. Int. Conf. Comput. Commun. Autom. (ICCCA).;124–127, 2015. D’monte, S., and Panchal, D., Data mining approach for diagnose of anxiety disorder. Int. Conf. Comput. Commun. Autom. (ICCCA).;124–127, 2015.
61.
Zurück zum Zitat Tovar, D., Cornejo, E., Xanthopoulos, P., Guarracino, M. R., and Pardalos, P. M., Data mining in psychiatric research. Psychiatr. Disord. 829:593–603, 2012.CrossRef Tovar, D., Cornejo, E., Xanthopoulos, P., Guarracino, M. R., and Pardalos, P. M., Data mining in psychiatric research. Psychiatr. Disord. 829:593–603, 2012.CrossRef
62.
Zurück zum Zitat Lyalina, S., Percha, B., Lependu, P., Iyer, S. V., Altman, R. B., and Shah, N. H., Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. J. Am. Med. Inform. Assoc. 20:297–305, 2013.CrossRef Lyalina, S., Percha, B., Lependu, P., Iyer, S. V., Altman, R. B., and Shah, N. H., Identifying phenotypic signatures of neuropsychiatric disorders from electronic medical records. J. Am. Med. Inform. Assoc. 20:297–305, 2013.CrossRef
63.
Zurück zum Zitat Panagiotakopoulos, T. C., Lyras, D. P., Livaditis, M., Sgarbas, K. N., Anastassopoulos, G. C., and Lymberopoulos, D. K., A contextual data mining approach toward assisting the treatment of anxiety disorders. IEEE Trans. Inf. Technol. Biomed. 14(3):567–581, 2010.CrossRefPubMed Panagiotakopoulos, T. C., Lyras, D. P., Livaditis, M., Sgarbas, K. N., Anastassopoulos, G. C., and Lymberopoulos, D. K., A contextual data mining approach toward assisting the treatment of anxiety disorders. IEEE Trans. Inf. Technol. Biomed. 14(3):567–581, 2010.CrossRefPubMed
64.
Zurück zum Zitat Ince, N. F., Goksu, F., Pellizzer, G., Tewfik, A., and Stephane, M., Selection of spectro-temporal patterns in multichannel MEG with support vector machines for schizophrenia classification. 2008 30th Annu. Int. Conf. IEEE Eng. Med. Biol Soc. ;3554–3557, 2008. Ince, N. F., Goksu, F., Pellizzer, G., Tewfik, A., and Stephane, M., Selection of spectro-temporal patterns in multichannel MEG with support vector machines for schizophrenia classification. 2008 30th Annu. Int. Conf. IEEE Eng. Med. Biol Soc. ;3554–3557, 2008.
65.
Zurück zum Zitat Gangwar, M., Mishra, R. B., and Yadav, R. S., Application of decision tree method in the diagnosis of neuropsychiatric diseases. Asia-Pacific World Congr Comput Sci Eng. ;1–8, 2014. Gangwar, M., Mishra, R. B., and Yadav, R. S., Application of decision tree method in the diagnosis of neuropsychiatric diseases. Asia-Pacific World Congr Comput Sci Eng. ;1–8, 2014.
66.
Zurück zum Zitat GeethaRamani, R., and Sivaselvi, K., Data mining technique for identification of diagnostic biomarker to predict schizophrenia disorder. 2014 IEEE Int. Conf. Comput. Intell. Comput. Res. ;1–8, 2014. GeethaRamani, R., and Sivaselvi, K., Data mining technique for identification of diagnostic biomarker to predict schizophrenia disorder. 2014 IEEE Int. Conf. Comput. Intell. Comput. Res. ;1–8, 2014.
67.
Zurück zum Zitat Lanata, A., Greco, A., Valenza, G., and Scilingo, E. P., A pattern recognition approach based on electrodermal response for pathological mood identification in bipolar disorders. ICASSP, IEEE Int. Conf. Acoust. Speech Sign. Process ;3601–3605, 2014. Lanata, A., Greco, A., Valenza, G., and Scilingo, E. P., A pattern recognition approach based on electrodermal response for pathological mood identification in bipolar disorders. ICASSP, IEEE Int. Conf. Acoust. Speech Sign. Process ;3601–3605, 2014.
68.
Zurück zum Zitat Thongkam, J., and Sukmak, V., Enhancing decision tree with adaboost for predicting schizophrenia readmission. Adv. Mater. Res. 931:1467–1471, 2014.CrossRef Thongkam, J., and Sukmak, V., Enhancing decision tree with adaboost for predicting schizophrenia readmission. Adv. Mater. Res. 931:1467–1471, 2014.CrossRef
69.
Zurück zum Zitat Castaldo, R., Xu, W., Melillo, P., Pecchia, L., Santamaria, L., and James, C., Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. ;3805–3808, 2016. Castaldo, R., Xu, W., Melillo, P., Pecchia, L., Santamaria, L., and James, C., Detection of mental stress due to oral academic examination via ultra-short-term HRV analysis. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS. ;3805–3808, 2016.
70.
Zurück zum Zitat Azar, G., Gloster, C., El-Bathy, N., Yu, S., Neela, R. H, and Alothman, I., Intelligent data mining and machine learning for mental health diagnosis using genetic algorithm. IEEE Int. Conf. Electro. Inf. Technol.;201–206, 2015. Azar, G., Gloster, C., El-Bathy, N., Yu, S., Neela, R. H, and Alothman, I., Intelligent data mining and machine learning for mental health diagnosis using genetic algorithm. IEEE Int. Conf. Electro. Inf. Technol.;201–206, 2015.
71.
Zurück zum Zitat Hadzic, M., Hadzic, F., and Dillon, T. S., Domain driven tree mining of semi-structured mental health information. Data Min. Bus. Appl. 2009;127–141. Hadzic, M., Hadzic, F., and Dillon, T. S., Domain driven tree mining of semi-structured mental health information. Data Min. Bus. Appl. 2009;127–141.
72.
Zurück zum Zitat Nguyen, T., O’Dea, B., Larsen, M., Phung, D., Venkatesh, S., and Christensen, H., Using linguistic and topic analysis to classify sub-groups of online depression communities. Multimed. Tools Appl. 76(8):10653–10676, 2017.CrossRef Nguyen, T., O’Dea, B., Larsen, M., Phung, D., Venkatesh, S., and Christensen, H., Using linguistic and topic analysis to classify sub-groups of online depression communities. Multimed. Tools Appl. 76(8):10653–10676, 2017.CrossRef
73.
Zurück zum Zitat Cairney, J., Veldhuizen, S., Vigod, S., Streiner, D. L., Wade, T. J., and Kurdyak, P., Exploring the social determinants of mental health service use using intersectionality theory and CART analysis. J. Epidemiol. Commun. Health. 68(2):145–150, 2014.CrossRef Cairney, J., Veldhuizen, S., Vigod, S., Streiner, D. L., Wade, T. J., and Kurdyak, P., Exploring the social determinants of mental health service use using intersectionality theory and CART analysis. J. Epidemiol. Commun. Health. 68(2):145–150, 2014.CrossRef
74.
Zurück zum Zitat Barros, J., Morales, S., Echávarri, O., García, A., Ortega, J., Asahi, T. et al., Suicide detection in Chile: Proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders. Rev. Bras. Psiquiatr. 39(1):1–11, 2017.CrossRefPubMed Barros, J., Morales, S., Echávarri, O., García, A., Ortega, J., Asahi, T. et al., Suicide detection in Chile: Proposing a predictive model for suicide risk in a clinical sample of patients with mood disorders. Rev. Bras. Psiquiatr. 39(1):1–11, 2017.CrossRefPubMed
75.
Zurück zum Zitat Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatr. 2016;3(3):243–250. Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. Cross-trial prediction of treatment outcome in depression: A machine learning approach. Lancet Psychiatr. 2016;3(3):243–250.
76.
Zurück zum Zitat Hadzic, M., Hadzic, F., and Dillon, T. S., Mining of patient data: Towards better treatment strategies for depression. Int. J. Funct. Inform. Personal. Med. 3(2):122–143, 2010. Hadzic, M., Hadzic, F., and Dillon, T. S., Mining of patient data: Towards better treatment strategies for depression. Int. J. Funct. Inform. Personal. Med. 3(2):122–143, 2010.
Metadaten
Titel
Data Mining Algorithms and Techniques in Mental Health: A Systematic Review
verfasst von
Susel Góngora Alonso
Isabel de la Torre-Díez
Sofiane Hamrioui
Miguel López-Coronado
Diego Calvo Barreno
Lola Morón Nozaleda
Manuel Franco
Publikationsdatum
01.09.2018
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 9/2018
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-1018-2

Weitere Artikel der Ausgabe 9/2018

Journal of Medical Systems 9/2018 Zur Ausgabe