Skip to main content
Erschienen in: Journal of Medical Systems 9/2018

01.09.2018 | Education & Training

A Systematic Review on Orthopedic Simulators for Psycho-Motor Skill and Surgical Procedure Training

verfasst von: Darshan D. Ruikar, Ravindra S. Hegadi, K. C. Santosh

Erschienen in: Journal of Medical Systems | Ausgabe 9/2018

Einloggen, um Zugang zu erhalten

Abstract

Precise simulators can replicate complete understanding of the models. In this survey, we focus on orthopedic simulators that are not only in replicating real-world models but also in educating with complete procedure: surgical, for instance. It covers 18 hip replacement, three-knee replacement, three facial surgeries, one spine surgery and six orthopedic psycho-motor skills training and assessment-based simulators. We also provide comparative studies and highlight current trends and possible challenges. We observed that orthopedic training methodologies have undergone a paradigm shift. This means that the simulators replace the use of sensitive hospital settings for training and skill acquisition. In brief, we address classified overview on existing orthopedic simulators: physical and Virtual Reality (VR)-based simulators. Key steps to develop computer-assisted, VR-based simulator are explored. Experts’ opinion on the use of simulation technologies in the field of orthopedics is discussed.
Fußnoten
2
EdHeads Hip Resurfacing Online Game (2007), available at: https://​edheads.​site-ym.​com/​page/​hip_​resurfacing
 
3
About the BoneDoc Simulator. http://​bonedoc.​org/​about.​html
 
6
Construct validity: the degree to which the simulator can assess the technical skills of the trainees.
 
7
Face validity: degree to which a simulator appears similar to the real procedure.
 
8
Transfer validity: extent to which the simulator learned skills are transferred into improved skill in-vivo.
 
20
Ascension, 3D Guidance trackSTAR and drivebay 6DoF. https://​www.​ascension-tech.​com/​products/​trakstar-drivebay/​
 
24
Northern Digital Inc., Polaris optical tracking system. https://​www.​ndigital.​com/​medical/​products/​polaris-family/​
 
Literatur
1.
Zurück zum Zitat Torkington, J., Smith, S. G., Rees, B. I., and Darzi, A., The role of simulation in surgical training. Ann. R. Coll. Surg. Engl. 82(2):88–94, 2000.PubMedPubMedCentral Torkington, J., Smith, S. G., Rees, B. I., and Darzi, A., The role of simulation in surgical training. Ann. R. Coll. Surg. Engl. 82(2):88–94, 2000.PubMedPubMedCentral
2.
Zurück zum Zitat Akhtar, K. S. N., Chen, A., Standfield, N. J., and Gupte, C. M., The role of simulation in developing surgical skills. Curr. Rev. Muscoskelet. Med. 7(2):155–160, 2014.CrossRef Akhtar, K. S. N., Chen, A., Standfield, N. J., and Gupte, C. M., The role of simulation in developing surgical skills. Curr. Rev. Muscoskelet. Med. 7(2):155–160, 2014.CrossRef
3.
Zurück zum Zitat Ziv, A., Small, S.D., and Wolpe, P.R., Patient safety and simulation-based medical education. Med. Teach. 22(5):489–495, 2000.CrossRef Ziv, A., Small, S.D., and Wolpe, P.R., Patient safety and simulation-based medical education. Med. Teach. 22(5):489–495, 2000.CrossRef
4.
Zurück zum Zitat Mabrey, Jay D., Reinig, Karl D., and Dilworth Cannon, W., Virtual reality in orthopaedics: is it a reality. Clin. Orthop. Relat. Res. 468(10):2586–2591, 2010.CrossRefPubMedPubMedCentral Mabrey, Jay D., Reinig, Karl D., and Dilworth Cannon, W., Virtual reality in orthopaedics: is it a reality. Clin. Orthop. Relat. Res. 468(10):2586–2591, 2010.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Mohan, A., and Proctor, M., Virtual reality – a ’play station’ of the future A review of virtual reality and orthopaedics. Acta Orthop. Belg. 72(6):659–663, 2006.PubMed Mohan, A., and Proctor, M., Virtual reality – a ’play station’ of the future A review of virtual reality and orthopaedics. Acta Orthop. Belg. 72(6):659–663, 2006.PubMed
7.
Zurück zum Zitat Windsor, J.A., Role of simulation in surgical education and training. ANZ J. Surg. 79(3):127–132, 2009.CrossRefPubMed Windsor, J.A., Role of simulation in surgical education and training. ANZ J. Surg. 79(3):127–132, 2009.CrossRefPubMed
8.
Zurück zum Zitat Riaz, A. A., and Alexander, J. F., The role and validity of surgical simulation. Int. Surg. 100(2):155–160, 2015. Riaz, A. A., and Alexander, J. F., The role and validity of surgical simulation. Int. Surg. 100(2):155–160, 2015.
9.
Zurück zum Zitat Vaughan, N., Dubey, V.N., Wainwright, T.W., and Middleton, R.G.: Does virtual-reality training on orthopaedic simulators improve performance in the operating room? In: Science and information conference (SAI), pages 51–54. IEEE, 2015 Vaughan, N., Dubey, V.N., Wainwright, T.W., and Middleton, R.G.: Does virtual-reality training on orthopaedic simulators improve performance in the operating room? In: Science and information conference (SAI), pages 51–54. IEEE, 2015
10.
Zurück zum Zitat G Lopez, R., Wright, D., Martin, J., Bracey, J.D., and Gupta, R., A cost-effective junior resident training and assessment simulator for orthopaedic surgical skills via fundamentals of orthopaedic surgery: AAOS exhibit selection. J. Bone Joint Surg. Am. 97(8):659–666, 2015.CrossRef G Lopez, R., Wright, D., Martin, J., Bracey, J.D., and Gupta, R., A cost-effective junior resident training and assessment simulator for orthopaedic surgical skills via fundamentals of orthopaedic surgery: AAOS exhibit selection. J. Bone Joint Surg. Am. 97(8):659–666, 2015.CrossRef
11.
Zurück zum Zitat Stirling, E.R.B., Lewis, T.L., and Ferran, N.A., Surgical skills simulation in trauma and orthopaedic training. J. Orthop. Surg. Res. 9(1):126–135, 2014.CrossRefPubMedPubMedCentral Stirling, E.R.B., Lewis, T.L., and Ferran, N.A., Surgical skills simulation in trauma and orthopaedic training. J. Orthop. Surg. Res. 9(1):126–135, 2014.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Johns, B.D., The creation and validation of an augmented reality orthopaedic drilling simulator for surgical training. PhD thesis: University of Iowa, 2008. Johns, B.D., The creation and validation of an augmented reality orthopaedic drilling simulator for surgical training. PhD thesis: University of Iowa, 2008.
13.
Zurück zum Zitat Issenberg, B.S., McGaghie, W.C., Hart, I.R., Mayer, J.W., Felner, J.M., Petrusa, E.R., Waugh, R.A., Brown, D.D., Safford, R.R., and Gessner, I.H., Simulation technology for health care professional skills training and assessment. Jama 282(9):861–866, 1999.CrossRefPubMed Issenberg, B.S., McGaghie, W.C., Hart, I.R., Mayer, J.W., Felner, J.M., Petrusa, E.R., Waugh, R.A., Brown, D.D., Safford, R.R., and Gessner, I.H., Simulation technology for health care professional skills training and assessment. Jama 282(9):861–866, 1999.CrossRefPubMed
14.
Zurück zum Zitat Vankipuram, M., Kahol, K., McLaren, A., and Panchanathan, S., A virtual reality simulator for orthopedic basic skills: A design and validation study. J. Biomed. Inform. 43(5):661–668, 2010.CrossRefPubMed Vankipuram, M., Kahol, K., McLaren, A., and Panchanathan, S., A virtual reality simulator for orthopedic basic skills: A design and validation study. J. Biomed. Inform. 43(5):661–668, 2010.CrossRefPubMed
15.
Zurück zum Zitat Madan, S.S., and Pai, D.R., Role of simulation in arthroscopy training. Simul. Healthc. 9(2):127–135, 2014.CrossRefPubMed Madan, S.S., and Pai, D.R., Role of simulation in arthroscopy training. Simul. Healthc. 9(2):127–135, 2014.CrossRefPubMed
16.
Zurück zum Zitat Pedowitz, R.A., Esch, J., and Snyder, S., Evaluation of a virtual reality simulator for arthroscopy skills development. Arthroscopy: The J. Arthroscopic and Related Surgery 18(6):1–6, 2002.CrossRef Pedowitz, R.A., Esch, J., and Snyder, S., Evaluation of a virtual reality simulator for arthroscopy skills development. Arthroscopy: The J. Arthroscopic and Related Surgery 18(6):1–6, 2002.CrossRef
17.
Zurück zum Zitat Thomas, G.W., Anderson, D.D., Karam, M.D., Johns, B., Murillo, M.J., and ans Lawrence, S.R.: A flexible orthopaedic trauma surgery box skills trainer. Abstract and poster presented at the 37th Annual Meeting of the American Society of Biomechanics, Omaha, NE, 3, 2013 Thomas, G.W., Anderson, D.D., Karam, M.D., Johns, B., Murillo, M.J., and ans Lawrence, S.R.: A flexible orthopaedic trauma surgery box skills trainer. Abstract and poster presented at the 37th Annual Meeting of the American Society of Biomechanics, Omaha, NE, 3, 2013
18.
Zurück zum Zitat Chou, Y.-J., Sun, S.-P., and Liu, H.-H., Calcaneal osteotomy preoperative planning system with 3d full-sized computer-assisted technology. J. Med. Syst. 35(5):755–763, 2011.CrossRefPubMed Chou, Y.-J., Sun, S.-P., and Liu, H.-H., Calcaneal osteotomy preoperative planning system with 3d full-sized computer-assisted technology. J. Med. Syst. 35(5):755–763, 2011.CrossRefPubMed
19.
Zurück zum Zitat Wagner, A., Ploder, O., Enislidis, G., Truppe, M., and Ewers, R., Image-guided surgery. Int. J. Oral Maxillofac. Surg. 25(2):147–151, 1996.CrossRefPubMed Wagner, A., Ploder, O., Enislidis, G., Truppe, M., and Ewers, R., Image-guided surgery. Int. J. Oral Maxillofac. Surg. 25(2):147–151, 1996.CrossRefPubMed
20.
Zurück zum Zitat Comaneanu, R.M., Tarcolea, M., Vlasceanu, D., and Cotrut, M.C., Virtual 3d reconstruction, diagnosis and surgical planning with mimics software. Int. J. Nano Biomater. 4(1):69–77, 2012.CrossRef Comaneanu, R.M., Tarcolea, M., Vlasceanu, D., and Cotrut, M.C., Virtual 3d reconstruction, diagnosis and surgical planning with mimics software. Int. J. Nano Biomater. 4(1):69–77, 2012.CrossRef
21.
Zurück zum Zitat Kyselova, O., Marchenko, A., Nastenko, I., Rudenko, K., and Mamalyha, A.: The use of three – dimensional modeling system mimics in studying process of medical-engineering specialty. In: Proceedings of International Conference ”Biomedical Engineering, pages 224–227. Biomedical Engineering Institute of Kaunas University of Technology, Kaunas, 2010. Kyselova, O., Marchenko, A., Nastenko, I., Rudenko, K., and Mamalyha, A.: The use of three – dimensional modeling system mimics in studying process of medical-engineering specialty. In: Proceedings of International Conference ”Biomedical Engineering, pages 224–227. Biomedical Engineering Institute of Kaunas University of Technology, Kaunas, 2010.
22.
Zurück zum Zitat Materialise: Mimics student edition course work. Minics, 2015 Materialise: Mimics student edition course work. Minics, 2015
23.
Zurück zum Zitat O’Toole, R.V., Jaramaz, B., DiGioia, A.M., Visnic, C.D., and Reid, R.H., Biomechanics for preoperative planning and surgical simulations in orthopaedics. Comput. Biol. Med. 25(2):183188–186191, 1995. O’Toole, R.V., Jaramaz, B., DiGioia, A.M., Visnic, C.D., and Reid, R.H., Biomechanics for preoperative planning and surgical simulations in orthopaedics. Comput. Biol. Med. 25(2):183188–186191, 1995.
24.
Zurück zum Zitat Seel, M.J., Hafez, M.A., Eckman, K., Jaramaz, B., Davidson, D., and DiGioia III, A.M., Three – dimensional planning and virtual radiographs in revision total hip arthroplasty for instability. Clin. Orthop. Relat. Res. 442:35–38, 2006.PubMed Seel, M.J., Hafez, M.A., Eckman, K., Jaramaz, B., Davidson, D., and DiGioia III, A.M., Three – dimensional planning and virtual radiographs in revision total hip arthroplasty for instability. Clin. Orthop. Relat. Res. 442:35–38, 2006.PubMed
25.
Zurück zum Zitat Jun, Y., and Park, S., Polygon-based 3 D surgical planning system for hip operation. Int. J. Precis. Eng. Manuf. 12(1):157–160, 2011.CrossRef Jun, Y., and Park, S., Polygon-based 3 D surgical planning system for hip operation. Int. J. Precis. Eng. Manuf. 12(1):157–160, 2011.CrossRef
26.
Zurück zum Zitat Dick, C., Georgii, J., Burgkart, R., and Westermann, R.: A 3 D simulation system for hip joint replacement planning. In: World congress on medical physics and biomedical engineering, September 7-12, 2009, pp. 363–366. Springer, Munich, 2010. Dick, C., Georgii, J., Burgkart, R., and Westermann, R.: A 3 D simulation system for hip joint replacement planning. In: World congress on medical physics and biomedical engineering, September 7-12, 2009, pp. 363–366. Springer, Munich, 2010.
27.
Zurück zum Zitat Koch, R.M., Roth, M.S.H., Gross, M.H., Zimmermann, A.P., and Sailer, H.F.: A framework for facial surgery simulation. In: Proceedings of the 18th spring conference on Computer graphics, pp. 33–42 ACM, 2002 Koch, R.M., Roth, M.S.H., Gross, M.H., Zimmermann, A.P., and Sailer, H.F.: A framework for facial surgery simulation. In: Proceedings of the 18th spring conference on Computer graphics, pp. 33–42 ACM, 2002
28.
Zurück zum Zitat Schmidt, J., Berti, G., Fingberg, J., Cao, J., and Wollny, G.: A finite element based tool chain for the planning and simulation of maxillo-facial surgery. Sciences New York, 1–17, 2004 Schmidt, J., Berti, G., Fingberg, J., Cao, J., and Wollny, G.: A finite element based tool chain for the planning and simulation of maxillo-facial surgery. Sciences New York, 1–17, 2004
29.
Zurück zum Zitat Digioia, A.M., Jaramaz, B., Nikou, C., Labarca, R.S., Moody, J.E., and Colgan, B.D., Surgical navigation for total hip replacement with the use of Hipnav. Oper. Tech. Orthop. 10(1):3–8, 2000.CrossRef Digioia, A.M., Jaramaz, B., Nikou, C., Labarca, R.S., Moody, J.E., and Colgan, B.D., Surgical navigation for total hip replacement with the use of Hipnav. Oper. Tech. Orthop. 10(1):3–8, 2000.CrossRef
30.
Zurück zum Zitat O’Toole, R. V., Colgan, B., and Kischel12, E.: Hipnav: pre-operative planning and intra-operative navigational guidance for acetabular implant placement in total hip replacement surgery. In: Proceedings of the Computer Assisted Orthopaedic Surgery Symposium, Bern, Switzerland, pp. 3–8, 1996 O’Toole, R. V., Colgan, B., and Kischel12, E.: Hipnav: pre-operative planning and intra-operative navigational guidance for acetabular implant placement in total hip replacement surgery. In: Proceedings of the Computer Assisted Orthopaedic Surgery Symposium, Bern, Switzerland, pp. 3–8, 1996
31.
Zurück zum Zitat DiGioia, A.M., Jaramaz, B., Blackwell, M., Simon, D.A., Morgan, F., Moody, J.E., Nikou, C., Colgan, B.D., Aston, C.A., and LaBarca, R.S.: An image guided navigation system for accurate alignment in total hip replacement surgery. The Robotics Institute Carnegie Mellon University, 1998 DiGioia, A.M., Jaramaz, B., Blackwell, M., Simon, D.A., Morgan, F., Moody, J.E., Nikou, C., Colgan, B.D., Aston, C.A., and LaBarca, R.S.: An image guided navigation system for accurate alignment in total hip replacement surgery. The Robotics Institute Carnegie Mellon University, 1998
32.
Zurück zum Zitat Sabri, H., Cowan, B., Kapralos, B., Porte, M., Backstein, D., and Dubrowskie, A., Serious games for knee replacement surgery procedure education and training. Procedia. Soc. Behav. Sci. 2(2):3483–3488, 2010.CrossRef Sabri, H., Cowan, B., Kapralos, B., Porte, M., Backstein, D., and Dubrowskie, A., Serious games for knee replacement surgery procedure education and training. Procedia. Soc. Behav. Sci. 2(2):3483–3488, 2010.CrossRef
33.
Zurück zum Zitat Cowan, B.B.D., Total knee replacement serious game for surgical education and training. PhD thesis: University of Ontario Institute of Technology (Canada, 2012. Cowan, B.B.D., Total knee replacement serious game for surgical education and training. PhD thesis: University of Ontario Institute of Technology (Canada, 2012.
34.
Zurück zum Zitat Półjanowicz, W., Roszak, M., Kowalewski, W., and Kołodziejczak, B., Using a virtual learning environment as a key to the development of innovative medical education. Studies in Logic, Grammar and Rhetoric 39(1):123–142, 2014.CrossRef Półjanowicz, W., Roszak, M., Kowalewski, W., and Kołodziejczak, B., Using a virtual learning environment as a key to the development of innovative medical education. Studies in Logic, Grammar and Rhetoric 39(1):123–142, 2014.CrossRef
35.
Zurück zum Zitat Blyth, P., Stott, N. S., and Anderson, I. A., A simulation-based training system for hip fracture fixation for use within the hospital environment. Injury 38(10):1197–1203, 2007.CrossRefPubMed Blyth, P., Stott, N. S., and Anderson, I. A., A simulation-based training system for hip fracture fixation for use within the hospital environment. Injury 38(10):1197–1203, 2007.CrossRefPubMed
36.
Zurück zum Zitat Tsai, M.-D., Hsieh, M.-S., and Jou, S.-B., Virtual reality orthopedic surgery simulator. Comput. Biol. Med. 31(5):333–351, 2001.CrossRefPubMed Tsai, M.-D., Hsieh, M.-S., and Jou, S.-B., Virtual reality orthopedic surgery simulator. Comput. Biol. Med. 31(5):333–351, 2001.CrossRefPubMed
37.
Zurück zum Zitat Delp, S.L., Loan, P.J., Hoy, M.G., Zajac, F.E., Topp, E.L., and Rosen, J.M., An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8):757–767, 1990.CrossRefPubMed Delp, S.L., Loan, P.J., Hoy, M.G., Zajac, F.E., Topp, E.L., and Rosen, J.M., An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8):757–767, 1990.CrossRefPubMed
38.
Zurück zum Zitat Blyth, Dr P.: Virtual reality simulation of hip surgery. PhD thesis, Bioengineering Institute University of Auckland, 2008 Blyth, Dr P.: Virtual reality simulation of hip surgery. PhD thesis, Bioengineering Institute University of Auckland, 2008
39.
Zurück zum Zitat Blyth, P., Stott, N. S., and Anderson, I. A., Virtual reality assessment of technical skill using the Bonedoc DHS simulator. Injury 39(10):1127–1133, 2008.CrossRefPubMed Blyth, P., Stott, N. S., and Anderson, I. A., Virtual reality assessment of technical skill using the Bonedoc DHS simulator. Injury 39(10):1127–1133, 2008.CrossRefPubMed
40.
Zurück zum Zitat Blyth, P., and Sehgal, P.: Use of the Bonedoc DHS simulator by fifth year medical students: A pilot study. In: Proceedings of ASCILITE-Australian society for computers in learning in tertiary education annual conference, 74–80, 2009 Blyth, P., and Sehgal, P.: Use of the Bonedoc DHS simulator by fifth year medical students: A pilot study. In: Proceedings of ASCILITE-Australian society for computers in learning in tertiary education annual conference, 74–80, 2009
41.
Zurück zum Zitat Pransky, J., ROBODOC - surgical robot success story. Industrial Robot: An International Journal 24(3): 231–233, 1997.CrossRef Pransky, J., ROBODOC - surgical robot success story. Industrial Robot: An International Journal 24(3): 231–233, 1997.CrossRef
42.
Zurück zum Zitat Assassi, L., Charbonnier, C., Schmid, J., Volino, P., and Magnenat-Thalmann, N., From MRI to anatomical simulation of the hip joint. Comput. Anim. Virtual Worlds 20(1):53–66, 2009.CrossRef Assassi, L., Charbonnier, C., Schmid, J., Volino, P., and Magnenat-Thalmann, N., From MRI to anatomical simulation of the hip joint. Comput. Anim. Virtual Worlds 20(1):53–66, 2009.CrossRef
43.
Zurück zum Zitat Dev, P., Fellingham, L.L., Vassiliadis, A., Woolson, S.T., White, D.N., and Young, S.L.: 3D graphics for interactive surgical simulation and implant design. In: 28th annual technical symposium, pp. 52–57. International Society for Optics and Photonics, 1984 Dev, P., Fellingham, L.L., Vassiliadis, A., Woolson, S.T., White, D.N., and Young, S.L.: 3D graphics for interactive surgical simulation and implant design. In: 28th annual technical symposium, pp. 52–57. International Society for Optics and Photonics, 1984
44.
Zurück zum Zitat Seth, T., Chaudhary, V., Buyea, C., and Bone, L.: A virtual interactive navigation system for orthopaedic surgical interventions. In: Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, pp. 71. ACM, 2011 Seth, T., Chaudhary, V., Buyea, C., and Bone, L.: A virtual interactive navigation system for orthopaedic surgical interventions. In: Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies, pp. 71. ACM, 2011
45.
Zurück zum Zitat Cecil, J., Ramanathan, P., Rahneshin, V., Prakash, A., and Pirela-Cruz, M.: Collaborative virtual environments for orthopedic surgery. In: 2013 IEEE international conference on automation science and engineering CASE, pp. 133–137. IEEE, 2013 Cecil, J., Ramanathan, P., Rahneshin, V., Prakash, A., and Pirela-Cruz, M.: Collaborative virtual environments for orthopedic surgery. In: 2013 IEEE international conference on automation science and engineering CASE, pp. 133–137. IEEE, 2013
46.
Zurück zum Zitat Fuerst, D., Hollensteiner, M., and Schrempf, A.: Assessment parameters for a novel simulator in minimally invasive spine surgery. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 5110–5113. IEEE, 2015 Fuerst, D., Hollensteiner, M., and Schrempf, A.: Assessment parameters for a novel simulator in minimally invasive spine surgery. In: 2015 37th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp. 5110–5113. IEEE, 2015
47.
Zurück zum Zitat Vankipuram, M., Haptic rendering of volumetric data through perceptual parameterization. PhD thesis: Arizona state university, 2008. Vankipuram, M., Haptic rendering of volumetric data through perceptual parameterization. PhD thesis: Arizona state university, 2008.
48.
Zurück zum Zitat Tsai, M.D., Hsieh, M.S., and Tsai, C.H., Bone drilling haptic interaction for orthopedic surgical simulator. Comput. Biol. Med. 37(12):1709–1718, 2007.CrossRefPubMed Tsai, M.D., Hsieh, M.S., and Tsai, C.H., Bone drilling haptic interaction for orthopedic surgical simulator. Comput. Biol. Med. 37(12):1709–1718, 2007.CrossRefPubMed
49.
Zurück zum Zitat Hsish, M.S., Tsai, M.D., and Yeh, Y.D., An amputation simulator with bone sawing haptic interaction. Biomed Eng Appl Basis Commun 18(05):229–236, 2006.CrossRef Hsish, M.S., Tsai, M.D., and Yeh, Y.D., An amputation simulator with bone sawing haptic interaction. Biomed Eng Appl Basis Commun 18(05):229–236, 2006.CrossRef
50.
Zurück zum Zitat Wang, Q., Qin, J., Wang, W., Shan, J., Zhang, J., Liu, X., and Heng, P.-A.: Haptic rendering of drilling process in orthopedic surgical simulation based on the volumetric object. In: 2015 IEEE international conference on digital signal processing (DSP), pp. 1098–1101. IEEE, 2015 Wang, Q., Qin, J., Wang, W., Shan, J., Zhang, J., Liu, X., and Heng, P.-A.: Haptic rendering of drilling process in orthopedic surgical simulation based on the volumetric object. In: 2015 IEEE international conference on digital signal processing (DSP), pp. 1098–1101. IEEE, 2015
51.
Zurück zum Zitat Aziz, M.H., and Ayub, M.A., Measurement of forces and torques during non homogeneous material drilling operation. Int. J. Adv. Sci. Eng. Inf. Technol. 1(1):92–97, 2011.CrossRef Aziz, M.H., and Ayub, M.A., Measurement of forces and torques during non homogeneous material drilling operation. Int. J. Adv. Sci. Eng. Inf. Technol. 1(1):92–97, 2011.CrossRef
52.
Zurück zum Zitat Boiadjiev, G., Kastelov, R., Boiadjiev, T., Delchev, K., and Zagurski, K., Automatic bone drilling-more precise, reliable and safe manipulation in the orthopaedic surgery. J. Theor. Appl. Mech. 46(2):51–64, 2016.CrossRef Boiadjiev, G., Kastelov, R., Boiadjiev, T., Delchev, K., and Zagurski, K., Automatic bone drilling-more precise, reliable and safe manipulation in the orthopaedic surgery. J. Theor. Appl. Mech. 46(2):51–64, 2016.CrossRef
53.
Zurück zum Zitat Pinto, M.L., Sabater, J.M., Sofrony, J., Badesa, F.J., Rodriguez, J., and Garcia, N.: Haptic simulator for training of total knee replacement. In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 221–226. IEEE, 2010 Pinto, M.L., Sabater, J.M., Sofrony, J., Badesa, F.J., Rodriguez, J., and Garcia, N.: Haptic simulator for training of total knee replacement. In: 2010 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 221–226. IEEE, 2010
54.
Zurück zum Zitat Lin, Y., Wang, X., Fule, W.U., Chen, X., Wang, C., and Shen, G., Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. J. Biomed. Inform. 48:122–129, 2014.CrossRefPubMed Lin, Y., Wang, X., Fule, W.U., Chen, X., Wang, C., and Shen, G., Development and validation of a surgical training simulator with haptic feedback for learning bone-sawing skill. J. Biomed. Inform. 48:122–129, 2014.CrossRefPubMed
55.
Zurück zum Zitat Rambani, R., Ward, J., and Viant, W., Desktop-based computer-assisted orthopedic training system for spinal surgery. J. Surg. Educ. 71(6):805–809, 2014.CrossRefPubMed Rambani, R., Ward, J., and Viant, W., Desktop-based computer-assisted orthopedic training system for spinal surgery. J. Surg. Educ. 71(6):805–809, 2014.CrossRefPubMed
56.
Zurück zum Zitat Rambani, R., Viant, W., Ward, J., and Mohsen, A., Computer-assisted orthopedic training system for fracture fixation. J. Surg. Educ. 70(3):304–308, 2013.CrossRefPubMed Rambani, R., Viant, W., Ward, J., and Mohsen, A., Computer-assisted orthopedic training system for fracture fixation. J. Surg. Educ. 70(3):304–308, 2013.CrossRefPubMed
57.
Zurück zum Zitat Barrow, A., Akhtar, K., Gupte, C., and Bello, F., Requirements analysis of a 5 degree of freedom haptic simulator for orthopedic trauma surgery. Stud. Health Technol. Inform. 184:43–47, 2013.PubMed Barrow, A., Akhtar, K., Gupte, C., and Bello, F., Requirements analysis of a 5 degree of freedom haptic simulator for orthopedic trauma surgery. Stud. Health Technol. Inform. 184:43–47, 2013.PubMed
58.
Zurück zum Zitat Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Blevins, N.H., and Girod, S.: Visuohaptic simulation of bone surgery for training and evaluation. IEEE Computer Graphics and Applications, 26(6), 2006 Morris, D., Sewell, C., Barbagli, F., Salisbury, K., Blevins, N.H., and Girod, S.: Visuohaptic simulation of bone surgery for training and evaluation. IEEE Computer Graphics and Applications, 26(6), 2006
59.
Zurück zum Zitat Goswami, B., and Misra, S.K.R., 3D modeling of X-ray images: A review. Int. J. Comput. Appl. 132(7): 40–46, 2015. Goswami, B., and Misra, S.K.R., 3D modeling of X-ray images: A review. Int. J. Comput. Appl. 132(7): 40–46, 2015.
60.
Zurück zum Zitat Elvins, T.T., A survey of algorithms for volume visualization. ACM Siggraph Comput. Graph. 26(3):194–201, 1992.CrossRef Elvins, T.T., A survey of algorithms for volume visualization. ACM Siggraph Comput. Graph. 26(3):194–201, 1992.CrossRef
61.
Zurück zum Zitat Qi, Z., Eagleson, R., and Peters, T.M., Volume visualization: a technical overview with a focus on medical applications. J. Digit. Imaging 24(4):640–664, 2011.CrossRef Qi, Z., Eagleson, R., and Peters, T.M., Volume visualization: a technical overview with a focus on medical applications. J. Digit. Imaging 24(4):640–664, 2011.CrossRef
62.
Zurück zum Zitat Lorensen, W.E., and Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: ACM siggraph computer graphics, volume 21, pages 163–169. ACM, 1987 Lorensen, W.E., and Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: ACM siggraph computer graphics, volume 21, pages 163–169. ACM, 1987
63.
Zurück zum Zitat Salisbury, K., Conti, F., and Barbagli, F., Haptic rendering: introductory concepts. IEEE Comput. Graph. Appl. 24(2):24–32, 2004.CrossRefPubMed Salisbury, K., Conti, F., and Barbagli, F., Haptic rendering: introductory concepts. IEEE Comput. Graph. Appl. 24(2):24–32, 2004.CrossRefPubMed
64.
Zurück zum Zitat Kockara, S., Halic, T., Iqbal, K., Bayrak, C., and Rowe, R.: Collision detection: A survey. In IEEE international conference on systems, man and cybernetics, 2007. ISIC., pp. 4046–4051. IEEE, 2007 Kockara, S., Halic, T., Iqbal, K., Bayrak, C., and Rowe, R.: Collision detection: A survey. In IEEE international conference on systems, man and cybernetics, 2007. ISIC., pp. 4046–4051. IEEE, 2007
65.
Zurück zum Zitat Markelj, P., Tomaževič, D., Likar, B., and Pernuš, F., A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3):642–661, 2012.CrossRefPubMed Markelj, P., Tomaževič, D., Likar, B., and Pernuš, F., A review of 3D/2D registration methods for image-guided interventions. Med. Image Anal. 16(3):642–661, 2012.CrossRefPubMed
66.
Zurück zum Zitat Hill, D.L.G., Batchelor, P.G., Holden, M., and Hawkes, D.J., Medical image registration. Phys. Med. Biol. 46(3):R1, 2001.CrossRefPubMed Hill, D.L.G., Batchelor, P.G., Holden, M., and Hawkes, D.J., Medical image registration. Phys. Med. Biol. 46(3):R1, 2001.CrossRefPubMed
67.
Zurück zum Zitat Escobar-Castillejos, D., Noguez, J., Neri, L., Magana, A., and Benes, B.: A review of simulators with haptic devices for medical training. Journal of medical systems, 40(4), 2016 Escobar-Castillejos, D., Noguez, J., Neri, L., Magana, A., and Benes, B.: A review of simulators with haptic devices for medical training. Journal of medical systems, 40(4), 2016
68.
Zurück zum Zitat Issenberg, S.B.: The scope of simulation-based healthcare education, 2006 Issenberg, S.B.: The scope of simulation-based healthcare education, 2006
69.
Zurück zum Zitat Pedowitz, R.A., and Marsh, L.J., Motor skills training in orthopaedic surgery: A paradigm shift toward a simulation-based educational curriculum. J. Am. Acad. Orthop. Surg. 20(7):407–409, 2012.CrossRefPubMed Pedowitz, R.A., and Marsh, L.J., Motor skills training in orthopaedic surgery: A paradigm shift toward a simulation-based educational curriculum. J. Am. Acad. Orthop. Surg. 20(7):407–409, 2012.CrossRefPubMed
70.
Zurück zum Zitat Hohn, E.A., Brooks, A.G., Leasure, J., Camisa, W., van Warmerdam, J., Kondrashov, D., Montgomery, W., and McGann, W., Development of a surgical skills curriculum for the training and assessment of manual skills in orthopedic surgical residents. J. Surg. Educ. 72(1):47–52, 2015.CrossRefPubMed Hohn, E.A., Brooks, A.G., Leasure, J., Camisa, W., van Warmerdam, J., Kondrashov, D., Montgomery, W., and McGann, W., Development of a surgical skills curriculum for the training and assessment of manual skills in orthopedic surgical residents. J. Surg. Educ. 72(1):47–52, 2015.CrossRefPubMed
71.
Zurück zum Zitat Blyth, P., Anderson, I.A., and Stott, S.N., Virtual reality simulators in orthopedic surgery: What do the surgeons think? J. Surg. Res. 131(1):133–139, 2006.CrossRefPubMed Blyth, P., Anderson, I.A., and Stott, S.N., Virtual reality simulators in orthopedic surgery: What do the surgeons think? J. Surg. Res. 131(1):133–139, 2006.CrossRefPubMed
72.
Zurück zum Zitat Vaughan, N., Dubey, V.N., Wainwright, T.W., and Middleton, R.G.: Can virtual-reality simulators assess experience and skill level of orthopaedic surgeons?. In: Science and Information Conference (SAI), 2015, pp. 105–108. IEEE, 2015 Vaughan, N., Dubey, V.N., Wainwright, T.W., and Middleton, R.G.: Can virtual-reality simulators assess experience and skill level of orthopaedic surgeons?. In: Science and Information Conference (SAI), 2015, pp. 105–108. IEEE, 2015
73.
Zurück zum Zitat Kho, J.Y., Johns, B.D., Thomas, G.W., Karam, M.D., Marsh, L.J., and Anderson, D.D., A hybrid reality radiation-free simulator for teaching wire navigation skills. J. Orthop. Trauma 29(10):e385, 2015.CrossRefPubMedPubMedCentral Kho, J.Y., Johns, B.D., Thomas, G.W., Karam, M.D., Marsh, L.J., and Anderson, D.D., A hybrid reality radiation-free simulator for teaching wire navigation skills. J. Orthop. Trauma 29(10):e385, 2015.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Waterman, B.R., Martin, K.D., Cameron, K.L., Owens, B.D., and Belmont, J.P., Simulation training improves surgical proficiency and safety during diagnostic shoulder arthroscopy performed by residents. Orthopedics 39(3):e479–e485, 2016.CrossRefPubMed Waterman, B.R., Martin, K.D., Cameron, K.L., Owens, B.D., and Belmont, J.P., Simulation training improves surgical proficiency and safety during diagnostic shoulder arthroscopy performed by residents. Orthopedics 39(3):e479–e485, 2016.CrossRefPubMed
75.
Zurück zum Zitat Eversbusch, A., and Grantcharov, T.P., Learning curves and impact of psychomotor training on performance in simulated colonoscopy: a randomized trial using a virtual reality endoscopy trainer. Surgical Endoscopy And Other Interventional Techniques 18(10):1514–1518, 2004.CrossRefPubMed Eversbusch, A., and Grantcharov, T.P., Learning curves and impact of psychomotor training on performance in simulated colonoscopy: a randomized trial using a virtual reality endoscopy trainer. Surgical Endoscopy And Other Interventional Techniques 18(10):1514–1518, 2004.CrossRefPubMed
Metadaten
Titel
A Systematic Review on Orthopedic Simulators for Psycho-Motor Skill and Surgical Procedure Training
verfasst von
Darshan D. Ruikar
Ravindra S. Hegadi
K. C. Santosh
Publikationsdatum
01.09.2018
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 9/2018
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-1019-1

Weitere Artikel der Ausgabe 9/2018

Journal of Medical Systems 9/2018 Zur Ausgabe