Skip to main content

Advertisement

Log in

The use of clinical irrelevance criteria in covariate model building with application to dofetilide pharmacokinetic data

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

To characterise the pharmacokinetics of dofetilide in patients and to identify clinically relevant parameter–covariate relationships. To investigate three different modelling strategies in covariate model building using dofetilide as an example: (1) using statistical criteria only or in combination with clinical irrelevance criteria for covariate selection, (2) applying covariate effects on total clearance or separately on non-renal and renal clearances and (3) using separate data sets for covariate selection and parameter estimation. Pooled concentration-time data (1,445 patients, 10,133 observations) from phase III clinical trials was used. A population pharmacokinetic model was developed using NONMEM. Stepwise covariate model building was applied to identify important covariates using the strategies described above. Inclusion and exclusion of covariates using clinical irrelevance was based on reduction in interindividual variability and changes in parameters at the extremes of the covariate distribution. Parametric separation of the elimination pathways was accomplished using creatinine clearance as an indicator of renal function. The pooled data was split in three parts which were used for covariate selection, parameter estimation and evaluation of predictive performance. Parameter estimations were done using the first-order (FO) and the first-order conditional estimation (FOCE) methods. A one-compartment model with first order absorption adequately described the data. Using clinical irrelevance criteria resulted in models containing less parameter–covariate relationships with a minor loss in predictive power. A larger number of covariates were found significant when the elimination was divided into a renal part and a non-renal part, but no gain in predictive power could be seen with this data set. The FO and FOCE estimation methods gave almost identical final covariate model structures with similar predictive performance. Clinical irrelevance criteria may be valuable for practical reasons since stricter inclusion/exclusion criteria shortens the run times of the covariate model building procedure and because only the covariates important for the predictive performance are included in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Falk RH, Pollak A, Singh SN, Friedrich T (1997) Intravenous dofetilide, a class III antiarrhythmic agent, for the termination of sustained atrial fibrillation or flutter. J Am Coll Cardiol 29: 385–390. doi:10.1016/S0735-1097(96)00506-2

    Article  PubMed  CAS  Google Scholar 

  2. Suttorp MJ, Polak PE, van ’t Hof A, Rasmussen HS, Dunselman PH, Kingma JH (1992) Efficacy and safety of a new selective class III antiarrhythmic agent dofetilide in paroxysmal atrial fibrillation or atrial flutter. Am J Cardiol 69: 417–419. doi:10.1016/0002-9149(92)90247-V

    Article  PubMed  CAS  Google Scholar 

  3. Norgaard BL, Wachtell K, Christensen PD, Madsen B, Johansen JB, Christiansen EH et al (1999) Efficacy and safety of intravenously administered dofetilide in acute termination of atrial fibrillation and flutter: a multicenter, randomized, double-blind, placebo-controlled trial. Danish Dofetilide in Atrial Fibrillation and Flutter Study Group. Am Heart J 137: 1062–1069. doi:10.1016/S0002-8703(99)70363-7

    CAS  Google Scholar 

  4. Falk RH, Decara JM (2000) Dofetilide: a new pure class III antiarrhythmic agent. Am Heart J 140: 697–706. doi:10.1067/mhj.2000.110457

    Article  PubMed  CAS  Google Scholar 

  5. Gwilt M, Arrowsmith JE, Blackburn KJ, Burges RA, Cross PE, Dalrymple HW et al (1991) UK-68,798: a novel, potent and highly selective class III antiarrhythmic agent which blocks potassium channels in cardiac cells. J Pharmacol Exp Ther 256: 318–324

    PubMed  CAS  Google Scholar 

  6. Le Coz F, Funck-Brentano C, Morell T, Ghadanfar MM, Jaillon P (1995) Pharmacokinetic and pharmacodynamic modeling of the effects of oral and intravenous administrations of dofetilide on ventricular repolarization. Clin Pharmacol Ther 57: 533–542. doi:10.1016/0009-9236(95)90038-1

    Article  PubMed  CAS  Google Scholar 

  7. Sedgwick M, Rasmussen HS, Walker D, Cobbe SM (1991) Pharmacokinetic and pharmacodynamic effects of UK-68,798, a new potential class III antiarrhythmic drug. Br J Clin Pharmacol 31: 515–519

    PubMed  CAS  Google Scholar 

  8. Gemmill JD, Howie CA, Meredith PA, Kelman AW, Rasmussen HS, Hillis WS et al (1991) A dose-ranging study of UK-68,798, a novel class III anti-arrhythmic agent, in normal volunteers. Br J Clin Pharmacol 32: 429–432

    PubMed  CAS  Google Scholar 

  9. Allen MJ, Nichols DJ, Oliver SD (2000) The pharmacokinetics and pharmacodynamics of oral dofetilide after twice daily and three times daily dosing. Br J Clin Pharmacol 50: 247–253. doi:10.1046/j.1365-2125.2000.00243.x

    Article  PubMed  CAS  Google Scholar 

  10. Tham TC, MacLennan BA, Burke MT, Harron DW (1993) Pharmacodynamics and pharmacokinetics of the class III antiarrhythmic agent dofetilide (UK-68,798) in humans. J Cardiovasc Pharmacol 21: 507–512

    Article  PubMed  CAS  Google Scholar 

  11. Smith DA, Rasmussen HS, Stopher DA, Walker DK (1992) Pharmacokinetics and metabolism of dofetilide in mouse, rat, dog and man. Xenobiotica 22: 709–717

    Article  PubMed  CAS  Google Scholar 

  12. Walker DK, Alabaster CT, Congrave GS, Hargreaves MB, Hyland R, Jones BC et al (1996) Significance of metabolism in the disposition and action of the antidysrhythmic drug, dofetilide. In vitro studies and correlation with in vivo data. Drug Metab Dispos 24: 447–455

    PubMed  CAS  Google Scholar 

  13. Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokinet Biopharm 5: 445–479. doi:10.1007/BF01061728

    Article  PubMed  CAS  Google Scholar 

  14. Jonsson EN, Karlsson MO (1998) Automated covariate model building within NONMEM. Pharm Res 15: 1463–1468. doi:10.1023/A:1011970125687

    Article  PubMed  CAS  Google Scholar 

  15. Sheiner L, Wakefield J (1999) Population modelling in drug development. Stat Methods Med Res 8: 183–193. doi:10.1191/096228099672920676

    Article  PubMed  CAS  Google Scholar 

  16. Ribbing J, Jonsson EN (2004) Power, selection bias and predictive performance of the Population Pharmacokinetic Covariate Model. J Pharmacokinet Pharmacodyn 31: 109–134. doi:10.1023/B:JOPA.0000034404.86036.72

    Article  PubMed  CAS  Google Scholar 

  17. Lindbom L, Pihlgren P, Jonsson N (2005) PsN-Toolkit-A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed 79: 241–257. doi:10.1016/j.cmpb.2005.04.005

    Article  PubMed  Google Scholar 

  18. Walker DK, Aherne GW, Arrowsmith JE, Cross PE, Kaye B, Smith DA et al (1991) Measurement of the class III antidysrhythmic drug, UK-68,798, in plasma by radioimmunoassay. J Pharm Biomed Anal 9: 141–149. doi:10.1016/0731-7085(91)80137-X

    Article  PubMed  CAS  Google Scholar 

  19. Beal SL, Sheiner LS (1994) NONMEM user’s guide. University of California at San Fransisco, NONMEM Project Group San Fransisco

    Google Scholar 

  20. Jonsson EN, Karlsson MO (1999) Xpose-an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 58: 51–64. doi:10.1016/S0169-2607(98)00067-4

    Article  PubMed  CAS  Google Scholar 

  21. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16: 31–41. doi:10.1159/000130554

    Article  PubMed  CAS  Google Scholar 

  22. Carroll RJ, Ruppert D (1988) Transformation and weighting in regression. Chapman & Hall, New York

    Google Scholar 

  23. Maitre PO, Buhrer M, Thomson D, Stanski DR (1991) A three-step approach combining Bayesian regression and NONMEM population analysis: application to midazolam. J Pharmacokinet Biopharm 19: 377–384. doi:10.1007/BF01061662

    Article  PubMed  CAS  Google Scholar 

  24. Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokinetic-pharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20: 511–528. doi:10.1007/BF01061469

    Article  PubMed  CAS  Google Scholar 

  25. Kowalski KG, Hutmacher MM (2001) Efficient screening of covariates in population models using Wald’s approximation to the likelihood ratio test. J Pharmacokinet Pharmacodyn 28: 253–275. doi:10.1023/A:1011579109640

    Article  PubMed  CAS  Google Scholar 

  26. Wahlby U, Jonsson EN, Karlsson MO (2002) Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS PharmSci 4: E27. doi:10.1208/ps040427

    Article  PubMed  Google Scholar 

  27. Abel S, Nichols DJ, Brearley CJ, Eve MD (2000) Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol 49: 64–71. doi:10.1046/j.1365-2125.2000.00114.x

    Article  PubMed  CAS  Google Scholar 

  28. ProductInformation (1999) Tikosyn [(TM)] dofetilide. Pfizer Inc., New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mats O. Karlsson.

Additional information

K. Tunblad and L. Lindbom contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tunblad, K., Lindbom, L., McFadyen, L. et al. The use of clinical irrelevance criteria in covariate model building with application to dofetilide pharmacokinetic data. J Pharmacokinet Pharmacodyn 35, 503–526 (2008). https://doi.org/10.1007/s10928-008-9099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-008-9099-z

Keywords

Navigation