Skip to main content
Log in

In vitro myoblast motility models: investigating migration dynamics for the study of skeletal muscle repair

  • Review
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

Skeletal muscle repair requires the migration of myoblasts (activated satellite cells) both to the injury site and then within the wound to facilitate cellular alignment in preparation for differentiation, fusion and eventual healing. Along this journey, the cells encounter a range of soluble and extracellular matrix factors which regulate their movement and ultimately determine how successful the repair process will be. Sub-optimal migration can lead to a number of scenarios, including reduced myoblast numbers entering the wound, poor alignment and insufficient differentiation to correctly repair the damage. It is therefore critical that all aspects of myoblast migration are understood, particularly in response to the changing growth and matrix factor profile prevalent following skeletal muscle injury. Since 1962, when Boyden first introduced his chemotactic chamber, numerous in vitro migration assays have been developed to mimic the wound more closely. These have increased in complexity to account for the complex micro-environment found in vivo during muscle repair and include a range of modified cell exclusion, chemotactic and three-dimensional assays. This review describes and discusses these advances and highlights the importance they have in expanding our understanding of myoblast migration dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen DL, Teitelbaum DH, Kurachi K (2003) Growth factor stimulation of matrix metalloproteinase expression and myoblast migration and invasion in vitro. Am J Physiol Cell Physiol 284(4):C805–C815. doi:10.1152/ajpcell.00215.2002

    PubMed  CAS  Google Scholar 

  • Al-Shanti N, Faulkner SH, Saini A, Loram I, Stewart CE (2011) A semi-automated programme for tracking myoblast migration following mechanical damage: manipulation by chemical inhibitors. Cell Physiol Biochem 27(6):625–636. doi:10.1159/000330071

    PubMed  CAS  Google Scholar 

  • Badylak SF (2002) The extracellular matrix as a scaffold for tissue reconstruction. Semin Cell Dev Biol 13(5):377–383

    PubMed  CAS  Google Scholar 

  • Bischoff R (1997) Chemotaxis of skeletal muscle satellite cells. Dev Dyn 208(4):505–515. doi:10.1002/(SICI)1097-0177(199704)208:4<505:AID-AJA6>3.0.CO;2-M

    PubMed  CAS  Google Scholar 

  • Bise R, Kanade T, Yin Z, Huh SI (2011) Automatic cell tracking applied to analysis of cell migration in wound healing assay. Conf Proc IEEE Eng Med Biol Soc 2011:6174–6179. doi:10.1109/IEMBS.2011.6091525

    PubMed  Google Scholar 

  • Boettiger D, Enomoto-Iwamoto M, Yoon HY, Hofer U, Menko AS, Chiquet-Ehrismann R (1995) Regulation of integrin alpha 5 beta 1 affinity during myogenic differentiation. Dev Biol 169(1):261–272. doi:10.1006/dbio.1995.1142

    PubMed  CAS  Google Scholar 

  • Bonnemann CG, Laing NG (2004) Myopathies resulting from mutations in sarcomeric proteins. Curr Opin Neurol 17(5):529–537

    PubMed  CAS  Google Scholar 

  • Boonen KJ, Rosaria-Chak KY, Baaijens FP, van der Schaft DW, Post MJ (2009) Essential environmental cues from the satellite cell niche: optimizing proliferation and differentiation. Am J Physiol Cell Physiol 296(6):C1338–C1345. doi:10.1152/ajpcell.00015.2009

    PubMed  CAS  Google Scholar 

  • Boyden S (1962) The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J Exp Med 115:453–466

    PubMed  CAS  Google Scholar 

  • Branton MH, Kopp JB (1999) TGF-beta and fibrosis. Microbes Infect 1(15):1349–1365

    PubMed  CAS  Google Scholar 

  • Carlson BM (1973) The regeneration of skeletal muscle. A review. Am J Anat 137(2):119–149. doi:10.1002/aja.1001370202

    PubMed  CAS  Google Scholar 

  • Chiron S, Tomczak C, Duperray A, Laine J, Bonne G, Eder A, Hansen A, Eschenhagen T, Verdier C, Coirault C (2012) Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix. PLoS ONE 7(4):e36173. doi:10.1371/journal.pone.0036173

    PubMed  CAS  Google Scholar 

  • Collins CA, Partridge TA (2005) Self-renewal of the adult skeletal muscle satellite cell. Cell Cycle 4(10):1338–1341

    PubMed  CAS  Google Scholar 

  • Cornelison DD (2008) Context matters: in vivo and in vitro influences on muscle satellite cell activity. J Cell Biochem 105(3):663–669. doi:10.1002/jcb.21892

    PubMed  CAS  Google Scholar 

  • Corona BT, Machingal MA, Criswell T, Vadhavkar M, Dannahower AC, Bergman C, Zhao W, Christ GJ (2012) Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng Part A 18(11–12):1213–1228. doi:10.1089/ten.TEA.2011.0614

    PubMed  CAS  Google Scholar 

  • Deforet M, Parrini MC, Petitjean L, Biondini M, Buguin A, Camonis J, Silberzan P (2012) Automated velocity mapping of migrating cell populations (AVeMap). Nat Methods 9(11):1081–1083. doi:10.1038/nmeth.2209

    PubMed  CAS  Google Scholar 

  • Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143. doi:10.1126/science.1116995

    PubMed  CAS  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    PubMed  CAS  Google Scholar 

  • Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17(5):524–532. doi:10.1016/j.ceb.2005.08.015

    PubMed  CAS  Google Scholar 

  • Floss T, Arnold HH, Braun T (1997) A role for FGF-6 in skeletal muscle regeneration. Genes Dev 11(16):2040–2051

    PubMed  CAS  Google Scholar 

  • Garijo N, Manzano R, Osta R, Perez MA (2012) Stochastic cellular automata model of cell migration, proliferation and differentiation: validation with in vitro cultures of muscle satellite cells. J Theor Biol 314:1–9. doi:10.1016/j.jtbi.2012.08.004

    PubMed  CAS  Google Scholar 

  • Germani A, Di Carlo A, Mangoni A, Straino S, Giacinti C, Turrini P, Biglioli P, Capogrossi MC (2003) Vascular endothelial growth factor modulates skeletal myoblast function. Am J Pathol 163(4):1417–1428. doi:10.1016/S0002-9440(10)63499-2

    PubMed  CAS  Google Scholar 

  • Goetsch KP, Niesler CU (2011) Optimization of the scratch assay for in vitro skeletal muscle wound healing analysis. Anal Biochem 411(1):158–160. doi:10.1016/j.ab.2010.12.012

    PubMed  CAS  Google Scholar 

  • Goetsch KP, Kallmeyer K, Niesler CU (2011) Decorin modulates collagen I-stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts. Matrix Biol 30(2):109–117. doi:10.1016/j.matbio.2010.10.009

    PubMed  CAS  Google Scholar 

  • Gough W, Hulkower KI, Lynch R, McGlynn P, Uhlik M, Yan L, Lee JA (2011) A quantitative, facile, and high-throughput image-based cell migration method is a robust alternative to the scratch assay. J Biomol Screen 16(2):155–163. doi:10.1177/1087057110393340

    PubMed  Google Scholar 

  • Griffin CA, Kafadar KA, Pavlath GK (2009) MOR23 promotes muscle regeneration and regulates cell adhesion and migration. Dev Cell 17(5):649–661. doi:10.1016/j.devcel.2009.09.004

    PubMed  CAS  Google Scholar 

  • Griffin CA, Apponi LH, Long KK, Pavlath GK (2010) Chemokine expression and control of muscle cell migration during myogenesis. J Cell Sci 123(Pt 18):3052–3060. doi:10.1242/jcs.066241

    PubMed  CAS  Google Scholar 

  • Grounds MD, Davies KE (2007) The allure of stem cell therapy for muscular dystrophy. Neuromuscul Disord 17(3):206–208. doi:10.1016/j.nmd.2007.01.007

    PubMed  Google Scholar 

  • Grounds MD, Sorokin L, White J (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15(6):381–391. doi:10.1111/j.1600-0838.2005.00467

    Google Scholar 

  • Harrison R (1907) Observations on the living developing nerve fiber. Anat Rec 1:116–128

    Google Scholar 

  • Horodyski J, Powell RJ (1996) Effect of aprotinin on smooth muscle cell proliferation, migration, and extracellular matrix synthesis. J Surg Res 66(2):115–118. doi:10.1006/jsre.1996.0381

    PubMed  CAS  Google Scholar 

  • Hosseini V, Ahadian S, Ostrovidov S, Camci-Unal G, Chen S, Kaji H, Ramalingam M, Khademhosseini A (2012) Engineered contractile skeletal muscle tissue on a microgrooved methacrylated gelatin substrate. Tissue Eng Part A 18(23–24):2453–2465. doi:10.1089/ten.TEA.2012.0181

    PubMed  CAS  Google Scholar 

  • Huang YC, Dennis RG, Larkin L, Baar K (2005) Rapid formation of functional muscle in vitro using fibrin gels. J Appl Physiol 98(2):706–713. doi:10.1152/japplphysiol.00273.2004

    PubMed  Google Scholar 

  • Hughes SM, Blau HM (1990) Migration of myoblasts across basal lamina during skeletal muscle development. Nature 345(6273):350–353. doi:10.1038/345350a0

    PubMed  CAS  Google Scholar 

  • Hulkower KI, Herber RL (2011) Cell migration and invasion assays as tools for drug discovery. Pharmaceutics 3:107–124

    CAS  Google Scholar 

  • Ishido M, Kasuga N (2012) In vivo real-time imaging of exogenous HGF-triggered cell migration in rat intact soleus muscles. Acta histochemica et cytochemica 45(3):193–199. doi:10.1267/ahc.11058

    PubMed  Google Scholar 

  • Jansen KM, Pavlath GK (2006) Mannose receptor regulates myoblast motility and muscle growth. J Cell Biol 174(3):403–413. doi:10.1083/jcb.200601102

    PubMed  CAS  Google Scholar 

  • Jeon JS, Chung S, Kamm RD, Charest JL (2011) Hot embossing for fabrication of a microfluidic 3D cell culture platform. Biomed Microdevices 13(2):325–333. doi:10.1007/s10544-010-9496-0

    PubMed  Google Scholar 

  • Johnston AP, Baker J, Bellamy LM, McKay BR, De Lisio M, Parise G (2010) Regulation of muscle satellite cell activation and chemotaxis by angiotensin II. PLoS ONE 5(12):e15212. doi:10.1371/journal.pone.0015212

    PubMed  CAS  Google Scholar 

  • Kaariainen M, Jarvinen T, Jarvinen M, Rantanen J, Kalimo H (2000) Relation between myofibers and connective tissue during muscle injury repair. Scand J Med Sci Sports 10(6):332–337

    PubMed  CAS  Google Scholar 

  • Kawamura K, Takano K, Suetsugu S, Kurisu S, Yamazaki D, Miki H, Takenawa T, Endo T (2004) N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor. J Biol Chem 279(52):54862–54871. doi:10.1074/jbc.M408057200

    PubMed  CAS  Google Scholar 

  • Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8(1):34–57. doi:10.1039/b711887b

    PubMed  CAS  Google Scholar 

  • Keese CR, Wegener J, Walker SR, Giaever I (2004) Electrical wound-healing assay for cells in vitro. Proc Natl Acad Sci USA 101(6):1554–1559. doi:10.1073/pnas.0307588100

    PubMed  CAS  Google Scholar 

  • Khan ZA, Farhangkhoee H, Mahon JL, Bere L, Gonder JR, Chan BM, Uniyal S, Chakrabarti S (2006) Endothelins: regulators of extracellular matrix protein production in diabetes. Exp Biol Med (Maywood) 231(6):1022–1029

    CAS  Google Scholar 

  • Kim L, Toh YC, Voldman J, Yu H (2007a) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7(6):681–694. doi:10.1039/b704602b

    PubMed  CAS  Google Scholar 

  • Kim MS, Yeon JH, Park JK (2007b) A microfluidic platform for 3-dimensional cell culture and cell-based assays. Biomed Microdevices 9(1):25–34. doi:10.1007/s10544-006-9016-4

    PubMed  CAS  Google Scholar 

  • Klagsbrun M, Eichmann A (2005) A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 16(4–5):535–548. doi:10.1016/j.cytogfr.2005.05.002

    PubMed  CAS  Google Scholar 

  • Klumpp D, Horch RE, Kneser U, Beier JP (2010) Engineering skeletal muscle tissue–new perspectives in vitro and in vivo. J Cell Mol Med 14(11):2622–2629. doi:10.1111/j.1582-4934.2010.01183.x

    PubMed  Google Scholar 

  • Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschlager M, Dolznig H (2013) In vitro cell migration and invasion assays. Mutat Res 752(1):10–24. doi:10.1016/j.mrrev.2012.08.001

    PubMed  CAS  Google Scholar 

  • Kruger RP, Aurandt J, Guan KL (2005) Semaphorins command cells to move. Nat Rev Mol Cell Biol 6(10):789–800. doi:10.1038/nrm1740

    PubMed  CAS  Google Scholar 

  • Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129(5):999–1010. doi:10.1016/j.cell.2007.03.044

    PubMed  CAS  Google Scholar 

  • Lampugnani MG (1999) Cell migration into a wounded area in vitro. Methods Mol Biol 96:177–182. doi:10.1385/1-59259-258-9:177

    PubMed  CAS  Google Scholar 

  • Langelaan ML, Boonen KJ, Rosaria-Chak KY, van der Schaft DW, Post MJ, Baaijens FP (2011) Advanced maturation by electrical stimulation: differences in response between C2C12 and primary muscle progenitor cells. J Tissue Eng Regen Med 5(7):529–539. doi:10.1002/term.345

    PubMed  Google Scholar 

  • Lesault PF, Theret M, Magnan M, Cuvellier S, Niu Y, Gherardi RK, Tremblay JP, Hittinger L, Chazaud B (2012) Macrophages improve survival, proliferation and migration of engrafted myogenic precursor cells into MDX skeletal muscle. PLoS ONE 7(10):e46698. doi:10.1371/journal.pone.0046698

    PubMed  CAS  Google Scholar 

  • Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2(2):329–333. doi:10.1038/nprot.2007.30

    PubMed  CAS  Google Scholar 

  • Longo UG, Trovato U, Loppini M, Rizzello G, Khan WS, Maffulli N, Denaro V (2012) Tissue engineered strategies for pseudoarthrosis. Open Orthop J 6:564–570. doi:10.2174/1874325001206010564

    PubMed  Google Scholar 

  • Ma YY, He XJ, Wang HJ, Xia YJ, Wang SL, Ye ZY, Tao HQ (2011) Interaction of coagulation factors and tumor-associated macrophages mediates migration and invasion of gastric cancer. Cancer Sci 102(2):336–342. doi:10.1111/j.1349-7006.2010.01795.x

    PubMed  CAS  Google Scholar 

  • Makarenkova HP, Gonzalez KN, Kiosses WB, Meech R (2009) Barx2 controls myoblast fusion and promotes MyoD-mediated activation of the smooth muscle alpha-actin gene. J Biol Chem 284(22):14866–14874. doi:10.1074/jbc.M807208200

    PubMed  CAS  Google Scholar 

  • Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Munoz-Canoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21. doi:10.1186/2044-5040-1-21

    PubMed  Google Scholar 

  • Mason BN, Starchenko A, Williams RM, Bonassar LJ, Reinhart-King CA (2013) Tuning three-dimensional collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater 9(1):4635–4644. doi:10.1016/j.actbio.2012.08.007

    PubMed  CAS  Google Scholar 

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    PubMed  CAS  Google Scholar 

  • Menon MB, Ronkina N, Schwermann J, Kotlyarov A, Gaestel M (2009) Fluorescence-based quantitative scratch wound healing assay demonstrating the role of MAPKAPK-2/3 in fibroblast migration. Cell Motil Cytoskelet 66(12):1041–1047. doi:10.1002/cm.20418

    CAS  Google Scholar 

  • Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto Calif) 1:423–449. doi:10.1146/annurev.anchem.1.031207.113042

    CAS  Google Scholar 

  • Mitchell CA, Davies MJ, Grounds MD, McGeachie JK, Crawford GJ, Hong Y, Chirila TV (1996) Enhancement of neovascularization in regenerating skeletal muscle by the sustained release of erucamide from a polymer matrix. J Biomater Appl 10(3):230–249

    PubMed  CAS  Google Scholar 

  • Muinonen-Martin AJ, Veltman DM, Kalna G, Insall RH (2010) An improved chamber for direct visualisation of chemotaxis. PLoS ONE 5(12):e15309. doi:10.1371/journal.pone.0015309

    PubMed  CAS  Google Scholar 

  • Musaro A (2005) Growth factor enhancement of muscle regeneration: a central role of IGF-1. Arch Ital Biol 143(3–4):243–248

    PubMed  CAS  Google Scholar 

  • Neuhaus P, Braun T (2002) Transcription factors in skeletal myogenesis of vertebrates. Results Probl Cell Differ 38:109–126

    PubMed  CAS  Google Scholar 

  • Nizamutdinova IT, Kim YM, Chung JI, Shin SC, Jeong YK, Seo HG, Lee JH, Chang KC, Kim HJ (2009) Anthocyanins from black soybean seed coats stimulate wound healing in fibroblasts and keratinocytes and prevent inflammation in endothelial cells. Food Chem Toxicol 47(11):2806–2812. doi:10.1016/j.fct.2009.08.016

    PubMed  CAS  Google Scholar 

  • Owen SC, Shoichet MS (2010) Design of three-dimensional biomimetic scaffolds. J Biomed Mater Res Part A 94(4):1321–1331. doi:10.1002/jbm.a.32834

    Google Scholar 

  • Persigehl T, Heindel W, Bremer C (2005) MR and optical approaches to molecular imaging. Abdom Imaging 30(3):342–354. doi:10.1007/s00261-004-0230-3

    PubMed  CAS  Google Scholar 

  • Powell CA, Smiley BL, Mills J, Vandenburgh HH (2002) Mechanical stimulation improves tissue-engineered human skeletal muscle. Am J Physiol Cell Physiol 283(5):C1557–C1565. doi:10.1152/ajpcell.00595.2001

    PubMed  CAS  Google Scholar 

  • Pownall ME, Gustafsson MK, Emerson CP Jr (2002) Myogenic regulatory factors and the specification of muscle progenitors in vertebrate embryos. Annu Rev Cell Dev Biol 18:747–783. doi:10.1146/annurev.cellbio.18.012502.105758

    PubMed  CAS  Google Scholar 

  • Rapoport DH, Becker T, Madany Mamlouk A, Schicktanz S, Kruse C (2011) A novel validation algorithm allows for automated cell tracking and the extraction of biologically meaningful parameters. PLoS ONE 6(11):e27315. doi:10.1371/journal.pone.0027315

    PubMed  CAS  Google Scholar 

  • Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856. doi:10.1242/dev.069088

    PubMed  CAS  Google Scholar 

  • Riahi R, Yang Y, Zhang DD, Wong PK (2012) Advances in wound-healing assays for probing collective cell migration. J Lab Autom 17(1):59–65. doi:10.1177/2211068211426550

    PubMed  CAS  Google Scholar 

  • Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Methods Mol Biol 294:23–29

    PubMed  Google Scholar 

  • Rossi CA, Pozzobon M, De Coppi P (2010) Advances in musculoskeletal tissue engineering: moving towards therapy. Organogenesis 6(3):167–172

    PubMed  Google Scholar 

  • Schultz E, Jaryszak DL, Valliere CR (1985) Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8(3):217–222. doi:10.1002/mus.880080307

    PubMed  CAS  Google Scholar 

  • Serena E, Flaibani M, Carnio S, Boldrin L, Vitiello L, De Coppi P, Elvassore N (2008) Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurol Res 30(2):207–214. doi:10.1179/174313208X281109

    PubMed  CAS  Google Scholar 

  • Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27(10):2527–2538. doi:10.1002/stem.178

    PubMed  CAS  Google Scholar 

  • Stern-Straeter J, Riedel F, Bran G, Hormann K, Goessler UR (2007) Advances in skeletal muscle tissue engineering. In Vivo 21(3):435–444

    PubMed  CAS  Google Scholar 

  • Sutton EJ, Henning TD, Pichler BJ, Bremer C, Daldrup-Link HE (2008) Cell tracking with optical imaging. Eur Radiol 18(10):2021–2032. doi:10.1007/s00330-008-0984-z

    PubMed  Google Scholar 

  • Suzuki J, Yamazaki Y, Li G, Kaziro Y, Koide H (2000) Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol Cell Biol 20(13):4658–4665

    PubMed  CAS  Google Scholar 

  • Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194(1):114–128. doi:10.1006/dbio.1997.8803

    PubMed  CAS  Google Scholar 

  • Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G (2010) Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Investig 120(1):11–19. doi:10.1172/JCI40373

    PubMed  CAS  Google Scholar 

  • Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 288(2):R345–R353. doi:10.1152/ajpregu.00454.2004

    PubMed  CAS  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2004) Evolving therapeutic strategies for Duchenne muscular dystrophy: targeting downstream events. Pediatr Res 56(6):831–841. doi:10.1203/01.PDR.0000145578.01985.D0

    PubMed  Google Scholar 

  • van de Kamp J, Jahnen-Dechent W, Rath B, Knuechel R, Neuss S (2013) Hepatocyte growth factor-loaded biomaterials for mesenchymal stem cell recruitment. Stem Cells Int 2013:892065. doi:10.1155/2013/892065

    PubMed  Google Scholar 

  • Vandenburgh H (2010) High-content drug screening with engineered musculoskeletal tissues. Tissue Eng Part B Rev 16(1):55–64. doi:10.1089/ten.TEB.2009.0445

    PubMed  CAS  Google Scholar 

  • Velleman SG, Ely D (2001) Low score normal muscle weakness alters cardiac decorin expression: implication for cardiac collagen fibril organization. Poult Sci 80(12):1743–1747

    PubMed  CAS  Google Scholar 

  • Walker I, Gorman SA, Cox RD, Vernon DI, Griffiths J, Brown SB (2004) A comparative analysis of phenothiazinium salts for the photosensitisation of murine fibrosarcoma (RIF-1) cells in vitro. Photochem Photobiol Sci 3(7):653–659. doi:10.1039/b400083h

    PubMed  CAS  Google Scholar 

  • Walker GM, Sai J, Richmond A, Stremler M, Chung CY, Wikswo JP (2005) Effects of flow and diffusion on chemotaxis studies in a microfabricated gradient generator. Lab Chip 5(6):611–618. doi:10.1039/b417245k

    PubMed  CAS  Google Scholar 

  • Wehrle U, Dusterhoft S, Pette D (1994) Effects of chronic electrical stimulation on myosin heavy chain expression in satellite cell cultures derived from rat muscles of different fiber-type composition. Differentiation 58(1):37–46. doi:10.1046/j.1432-0436.1994.5810037

  • Wells RG (2008) The role of matrix stiffness in regulating cell behavior. Hepatology 47(4):1394–1400. doi:10.1002/hep.22193

    PubMed  CAS  Google Scholar 

  • Wozniak AC, Anderson JE (2007) Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236(1):240–250. doi:10.1002/dvdy.21012

    PubMed  CAS  Google Scholar 

  • Wu CC, Su HW, Lee CC, Tang MJ, Su FC (2005) Quantitative measurement of changes in adhesion force involving focal adhesion kinase during cell attachment, spread, and migration. Biochem Biophys Res Commun 329(1):256–265. doi:10.1016/j.bbrc.2005.01.126

    PubMed  CAS  Google Scholar 

  • Yao CC, Ziober BL, Sutherland AE, Mendrick DL, Kramer RH (1996) Laminins promote the locomotion of skeletal myoblasts via the alpha 7 integrin receptor. J Cell Sci 109(Pt 13):3139–3150

    PubMed  CAS  Google Scholar 

  • Yarrow JC, Perlman ZE, Westwood NJ, Mitchison TJ (2004) A high-throughput cell migration assay using scratch wound healing, a comparison of image-based readout methods. BMC Biotechnol 4:21. doi:10.1186/1472-6750-4-21

    PubMed  Google Scholar 

  • Zaman MH, Kamm RD, Matsudaira P, Lauffenburger DA (2005) Computational model for cell migration in three-dimensional matrices. Biophys J 89(2):1389–1397. doi:10.1529/biophysj.105.060723

    PubMed  CAS  Google Scholar 

  • Zengel P, Nguyen-Hoang A, Schildhammer C, Zantl R, Kahl V, Horn E (2011) mu-Slide Chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol 12(1):21. doi:10.1186/1471-2121-12-21

    PubMed  Google Scholar 

  • Zicha D, Dunn GA, Brown AF (1991) A new direct-viewing chemotaxis chamber. J Cell Sci 99(Pt 4):769–775

    PubMed  Google Scholar 

  • Zigmond SH (1977) Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol 75(2 Pt 1):606–616

    PubMed  CAS  Google Scholar 

  • Zordan MD, Mill CP, Riese DJ 2nd, Leary JF (2011) A high throughput, interactive imaging, bright-field wound healing assay. Cytom Part A 79(3):227–232. doi:10.1002/cyto.a.21029

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carola U. Niesler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goetsch, K.P., Myburgh, K.H. & Niesler, C.U. In vitro myoblast motility models: investigating migration dynamics for the study of skeletal muscle repair. J Muscle Res Cell Motil 34, 333–347 (2013). https://doi.org/10.1007/s10974-013-9364-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-013-9364-7

Keywords

Navigation