Skip to main content
Log in

Bayesian analysis of paired survival data using a bivariate exponential distribution

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

We consider a Bayesian analysis method of paired survival data using a bivariate exponential model proposed by Moran (1967, Biometrika 54:385–394). Important features of Moran’s model include that the marginal distributions are exponential and the range of the correlation coefficient is between 0 and 1. These contrast with the popular exponential model with gamma frailty. Despite these nice properties, statistical analysis with Moran’s model has been hampered by lack of a closed form likelihood function. In this paper, we introduce a latent variable to circumvent the difficulty in the Bayesian computation. We also consider a model checking procedure using the predictive Bayesian P-value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Batchelor JR, Hackett M (1970) HL-A matching in treatment of burned patients with Skin Allografts. Lancet 2:581–583

    Article  Google Scholar 

  • Bayarri BA, Berger JO (2000) p values for composite null models. J Am Stat Assoc 95:1127–1142

    Article  MATH  MathSciNet  Google Scholar 

  • Chen M-H, Shao Q-M, Ibrahim JG (2000) Monte Carlo methods in Bayesian computation. Springer-Verlag, New York

  • Clayton D (1978) A model for association in bivariate life tables and its applications in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65:141–151

    Article  MATH  MathSciNet  Google Scholar 

  • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41(2):337–348

    Article  MATH  Google Scholar 

  • Gumbel EJ (1960) Bivariate exponential distributions. J Am Stat Assoc 55:698–707

    Article  MATH  MathSciNet  Google Scholar 

  • Holt JD, Prentice RL (1974) Survival analysis in twin studies and matched pair experiments. Biometrika 61:17–30

    Article  MATH  MathSciNet  Google Scholar 

  • Hougaard P (1995) Frailty models for survival data. Lifetime Data Anal 1:255–273

    Article  Google Scholar 

  • Huster WJ, Brookmeyer R, Self SG (1989) Modelling paired survival data with covariates. Biometrics 45:145–156

    Article  MATH  MathSciNet  Google Scholar 

  • Jung SH (1999) Rank tests for matched survival data. Lifetime Data Anal 5:67–79

    Article  MATH  MathSciNet  Google Scholar 

  • Jung SH, Su JQ (1995) Non-parametric estimation for the difference or ratio of median failure times for paired observations. Stat Med 14:275–281

    Google Scholar 

  • Lee EW, Wei LJ, Amato DA (1992) Cox-type regression analysis for large numbers of small groups of correlated failure time observations. In: Klein JP, Goel PK (eds) Survival analysis: state of the art. Dordrecht, Kluwer Academic, pp 237–247

    Google Scholar 

  • Lee EW, Wei LJ, Ying Z (1993) Linear regression analysis for highly stratified failure time data. J Am Stat Assoc 88:557–565

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY, Ying Z (1993) A simple nonparametric estimator of the bivariate survival function under univariate censoring. Biometrika 80:573–581

    Article  MATH  MathSciNet  Google Scholar 

  • Lin JS, Wei LJ (1992) Linear regression analysis for multivariate failure time observations. J Am Stat Assoc 87:1091–1097

    Article  MATH  MathSciNet  Google Scholar 

  • Marshall AW, Olkin I (1967) A multivariate exponential distribution. J Am Stat Assoc 62:30–44

    Article  MATH  MathSciNet  Google Scholar 

  • Meng XL (1994) Posterior predictive p-values. Ann Stat 22:1142–1160

    MATH  Google Scholar 

  • Moran PAP (1967) Testing for correlation between non-negative variates. Biometrika 54:385–394

    MATH  MathSciNet  Google Scholar 

  • Shih JH, Louis TA (1995) Assessing gamma frailty models for clustered failure time data. Lifetime Data Anal 1:205–220

    Article  MATH  MathSciNet  Google Scholar 

  • Woolson RF, Lachenbruch PA (1980) Rank tests for censored matched pairs. Biometrika 67:597–606

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

Jaeyong Lee was supported by Korea Research Foundation Grant (KRF-2003-041-C00054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeyong Lee.

Appendix

Appendix

Derivation of (3)

Note \((Z_1,Z_3)\) and \((Z_2,Z_4)\) are IID bivariate normal random vectors with means 0 and covariance matrix (1). From the density of \((Z_1,Z_3)\) and \((Z_2,Z_4)\), change of variable technique using (1) yields the density of \((X_1,X_2,\eta_1,\eta_2)\),

$$ \frac{\lambda_1\lambda_2}{4\pi^2 (1-\rho)} \exp\left\{-\frac {\lambda_1 x_1 + \lambda_2x_2 - 2 \sqrt{\rho\lambda_1\lambda_2x_1x_2} \cos(\eta_1-\eta_2)}{1-\rho}\right\}, $$

where \(x_1, x_2 \geq 0, 0 \leq \eta_1, \eta_2 \leq 2\pi\). Let \(V_1 = \eta_1 -\eta_2\) and \(V_2 = \eta_1.\) Then, the density of \((X_1,X_2,V_1,V_2)\) is

$$ \frac{\lambda_1\lambda_2}{4\pi^2 (1-\rho)} \exp \left\{ - \frac{1}{(1-\rho)} (\lambda_1 x_1 + \lambda_2x_2 - 2 \sqrt{\rho\lambda_1\lambda_2}\cos(v_1) \sqrt{x_1 x_2})\right\}, $$

where \(-2\pi \leq v_1 \leq 2\pi,\) and \(0 \leq v_2 \leq 2\pi+v_1\) for \(-2\pi \leq v_1 < 0\) and \(v_1 \leq v_2 \leq 2\pi\) for \(0 \leq v_1 \leq 2\pi.\) Integrating out v 2, we get the density of \((X_1,X_2,V_1)\)

$$ (2\pi-|v_1|) \frac{\lambda_1\lambda_2}{4\pi^2 (1-\rho)} \exp \left\{-\frac{1}{(1-\rho)} (\lambda_1 x_1 + \lambda_2x_2 - 2 \sqrt{\rho\lambda_1\lambda_2}\cos(v_1) \sqrt{x_1 x_2})\right\}. $$

Note the density of \((X_1,X_2,V_1)\) is symmetric in v 1 about 0. Letting \(U = |V_1|\), we get the density of \((X_1,X_2,U)\), (3).

Proof of Proposition 1

It suffices to show that the posterior is proper when the data set consists of two pairs of uncensored survival times \(D = \{(x_{11},x_{21},\delta_{11},\delta_{21}), (x_{12},x_{22},\delta_{12},\delta_{22})\}\) with \(\delta_{ji} = 1\) for i,j = 1,2. The posterior with prior (7) is proportional to

$$ \begin{array}{lll} &&\pi(\lambda_1,\lambda_2,\rho,u_1,u_2|D) \\ &\propto&\frac{1}{\lambda_1\lambda_2} \prod\limits_{i=1}^2 \frac{\lambda_1\lambda_2 (2\pi-u_i)}{(1-\rho)} \exp\left[ -\frac{1}{(1-\rho)} \left( \lambda_1x_{1i} + \lambda_2 x_{2i} - 2\sqrt{\rho\lambda_1\lambda_2x_{1i}x_{2i}} \cos(u_i)\right)\right] \\ &\preceq&\frac{\lambda_1\lambda_2}{(1-\rho)^2} \exp\left[ -\frac{1}{(1-\rho)} \sum\limits_{i=1}^2 \left( \lambda_1x_{1i} + \lambda_2 x_{2i}-2\sqrt{\lambda_1\lambda_2x_{1i}x_{2i}} \right)\right] \\ &=&\frac{\lambda_1\lambda_2}{(1-\rho)^2} \exp\left[ -\frac{1}{(1-\rho)} \sum\limits_{i=1}^2 \left( \sqrt{\lambda_1x_{1i}} - \sqrt{\lambda_2 x_{2i}} \right)^2\right], \end{array} $$

where \(0 < \rho < 1\), \(\lambda_1, \lambda_2 > 0\) and \(0 < u_1, u_2 < 2\pi\) and \(a(x) \preceq b(x)\) means b(x) is bigger than or equal to a constant multiple of a(x). Integrating out u 1 and u 2, we get

$$ \pi(\lambda_1, \lambda_2,\rho|D) \preceq \frac{\lambda_1\lambda_2}{(1-\rho)^2} \exp\left[ -\frac{1}{(1-\rho)} Q_0(\lambda_1,\lambda_2) \right], $$

where \(Q_0(\lambda_1,\lambda_2) = \sum_{i=1}^2 \left(\sqrt{\lambda_1x_{1i}} - \sqrt{\lambda_2 x_{2i}} \right)^2\). With the transformation \(t = 1/(1-\rho)\),

$$ \begin{array}{lll} &&\pi(\lambda_1,\lambda_2|D) \\ &\preceq & \int_0^1 \frac{\lambda_1\lambda_2}{(1-\rho)^2} \exp\left[ -\frac{1}{(1-\rho)} Q_0(\lambda_1,\lambda_2) \right] \hbox{d}\rho \\ &=& \lambda_1\lambda_2 \int_1^\infty \exp\left[-t Q_0(\lambda_1,\lambda_2)\right] \hbox{d}\rho \\ &=& \frac{\lambda_1\lambda_2}{Q_0(\lambda_1,\lambda_2)} \exp[-Q_0(\lambda_1,\lambda_2)]. \end{array} $$

With \(\mu_j =\sqrt{\lambda_j}\), for j = 1,2,

$$ \int_0^\infty\int_0^\infty \pi(\lambda_1,\lambda_2|D) \hbox{d}\lambda_1\hbox{d}\lambda_2\preceq \int_0^\infty\int_0^\infty \frac{\mu_1^3\mu_2^3}{Q(\mu_1,\mu_2)} \exp\left[-Q(\mu_1,\mu_2)\right]\hbox{d}\mu_1\,\hbox{d}\mu_2,$$
(8)

where

$$ \begin{array}{lll} Q(\mu_1,\mu_2)&=&\left(\sqrt{x_{11}}\mu_1-\sqrt{x_{21}}\mu_2\right)^2 +\left(\sqrt{x_{12}}\mu_1- \sqrt{x_{22}}\mu_2\right)^2 \\ &=&\mu^T A(D)\mu \end{array} $$

and

$$ A(D) = \left( \begin{array}{ll} x_{11}+x_{12} & -\left(\sqrt{x_{11}x_{21}} + \sqrt{x_{12}x_{22}}\right) \\ -\left(\sqrt{x_{11}x_{21}} + \sqrt{x_{12}x_{22}}\right) & x_{21}+x_{22} \end{array} \right).$$

With the assumption of Proposition 1, the matrix A(D) is a positive definite matrix. Hence, the RHS of (8) defines an integration with respect to a nonsingular bivariate normal density. Since every polynomial order moment exists for a nonsingular bivariate normal distribution, we conclude (8) is finite. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Kim, J. & Jung, SH. Bayesian analysis of paired survival data using a bivariate exponential distribution. Lifetime Data Anal 13, 119–137 (2007). https://doi.org/10.1007/s10985-006-9022-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-006-9022-0

Keywords

Navigation