Skip to main content

Advertisement

Log in

A marginal regression model for multivariate failure time data with a surviving fraction

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

Abstract

A marginal regression approach for correlated censored survival data has become a widely used statistical method. Examples of this approach in survival analysis include from the early work by Wei et al. (J Am Stat Assoc 84:1065–1073, 1989) to more recent work by Spiekerman and Lin (J Am Stat Assoc 93:1164–1175, 1998). This approach is particularly useful if a covariate’s population average effect is of primary interest and the correlation structure is not of interest or cannot be appropriately specified due to lack of sufficient information. In this paper, we consider a semiparametric marginal proportional hazard mixture cure model for clustered survival data with a surviving or “cure” fraction. Unlike the clustered data in previous work, the latent binary cure statuses of patients in one cluster tend to be correlated in addition to the possible correlated failure times among the patients in the cluster who are not cured. The complexity of specifying appropriate correlation structures for the data becomes even worse if the potential correlation between cure statuses and the failure times in the cluster has to be considered, and thus a marginal regression approach is particularly attractive. We formulate a semiparametric marginal proportional hazards mixture cure model. Estimates are obtained using an EM algorithm and expressions for the variance–covariance are derived using sandwich estimators. Simulation studies are conducted to assess finite sample properties of the proposed model. The marginal model is applied to a multi-institutional study of local recurrences of tonsil cancer patients who received radiation therapy. It reveals new findings that are not available from previous analyses of this study that ignored the potential correlation between patients within the same institution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chandler RE and Bate S (2007). Inference for clustered data using the independence loglikelihood. Biometrika 94: 167–183

    Article  MATH  MathSciNet  Google Scholar 

  • Chatterjee N and Shih J (2001). A bivariate cure-mixture approach for modeling familial association in disease. Biometrics 57: 779–786

    Article  MathSciNet  Google Scholar 

  • Chen M-H, Ibrahim JG and Sinha D (2002). Bayesian inference for multivariate survival data with a cure fraction. J Multivariate Anal 80: 101–126

    Article  MATH  MathSciNet  Google Scholar 

  • Clayton DG (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141–152

    Article  MATH  MathSciNet  Google Scholar 

  • Cox DR (1972). Regression models and life-tables. J Roy Statis Soc Ser B 34: 187–220

    MATH  Google Scholar 

  • Fang H-B, Li G and Sun J (2005). Maximum likelihood estimation in a semiparametric logistic/proportional-hazards mixture model. Scand J Stat 32: 59–75

    Article  MATH  MathSciNet  Google Scholar 

  • Kalbfleisch JD and Prentice RL (2002). The statistical analysis of failure time data, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Kuk AYC and Chen C (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika 79: 531–41

    Article  MATH  Google Scholar 

  • Lee AJ (1993). Generating random binary deviates having fixed marginal distributions and specified degree of association. Am Stat 47: 209–215

    Article  Google Scholar 

  • Li C-S and Taylor JMG (2002). A semi-parametric accelerated failure time cure model. Statis Med 21: 3235–3247

    Article  Google Scholar 

  • Liang K-Y and Zeger SL (1986). Longitudinal data analysis using generalized linear models. Biometrika 73: 13–22

    Article  MATH  MathSciNet  Google Scholar 

  • Lin DY (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Stat Medi 13: 2233–2247

    Article  Google Scholar 

  • Lipsitz SR, Dear KBG and Zhao L (1994). Jackknife estimators of variance for parameter estimates from estimating equations with applications to clustered survival data. Biometrics 50: 842–846

    Article  MATH  Google Scholar 

  • Lipsitz SR and Parzen M (1996). A jackknife estimator of variance for Cox regression for correlated survival data. Biometrics 52: 291–298

    Article  MATH  Google Scholar 

  • McLachlan G and Peel D (2000). Finite mixture models. Wiley, New York

    MATH  Google Scholar 

  • Oakes D (1999). Direct calculation of the information matrix via the EM algorithm. J Roy Stat Soc, Ser B, 61: 479–482

    Article  MATH  MathSciNet  Google Scholar 

  • Park CG, Park T and Shin DW (1996). A simple method for generating correlated binary variates. Am Stat 50: 306–310

    Article  MathSciNet  Google Scholar 

  • Peng Y (2003). Fitting semiparametric cure models. Comput Stat Data Anal 41: 481–490

    Article  Google Scholar 

  • Peng Y and Dear KBG (2000). A nonparametric mixture model for cure rate estimation. Biometrics 56: 237–243

    Article  MATH  Google Scholar 

  • Peng Y, Dear KBG and Denham JW (1998). A generalized F mixture model for cure rate estimation. Stat Med 17: 813–830

    Article  Google Scholar 

  • Royall RM (1986). Model robust confidence intervals using maximum likelihood estimators. Int Stat Rev 54: 221–226

    Article  MATH  MathSciNet  Google Scholar 

  • Spiekerman CF and Lin DY (1998). Marginal regression models for multivariate failure time data. J Am Stat Assoc 93: 1164–1175

    Article  MATH  MathSciNet  Google Scholar 

  • Sy JP and Taylor JMG (2000). Estimation in a Cox proportional hazards cure model. Biometrics 56: 227–236

    Article  MATH  MathSciNet  Google Scholar 

  • Tsodikov AD, Ibrahim JG and Yakovlev AY (2003). Estimating cure rates from survival data: an alternative to two-component mixture models. J Am Stat Assoc 98: 1063–1078

    Article  MathSciNet  Google Scholar 

  • Wei LJ, Lin DY and Weissfeld L (1989). Regression analysis of multivariate incomplete failure time data by modeling marginal distributions. J Am Stat Assoc 84: 1065–1073

    Article  MathSciNet  Google Scholar 

  • Wienke A, Lichtenstein P and Yashin AI (2003). A bivariate frailty model with a cure fraction for modeling familial correlation in disease. Biometrics 59: 1178–1183

    Article  MATH  MathSciNet  Google Scholar 

  • Withers HR, Peters LJ, Taylor JMG, Owen JB, Morrison WH, Schultheiss TE, Keane T, O’Sullivan B, Gupta N, Wang CC, Jones CU, Doppke KP, Myint S, Thompson M, Parsons JT, Mendenhall WM, Dische S, Aird EGA, Henk JM, Bidmean MAM, Svoboda V, Chon Y, Hanlon AL, Peters TL, Hanks GE and Dyk J (1995). Local control of carcinoma of the tonsil by radiation therapy: an analysis of patterns of fractionation in nine institutions. Int J Radiat Oncol, Biol, Phys 33: 549–562

    Article  Google Scholar 

  • Yamaguchi K (1992). Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of ‘permanent employment’ in Japan. J Am Stat Assoc 87: 284–292

    Article  Google Scholar 

  • Yau KKW and Ng ASK (2001). Long-term survivor mixture model with random effects: application to a multi-centre clinical trial of carcinoma. Stat Med 20: 1591–1607

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingwei Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, Y., Taylor, J.M.G. & Yu, B. A marginal regression model for multivariate failure time data with a surviving fraction. Lifetime Data Anal 13, 351–369 (2007). https://doi.org/10.1007/s10985-007-9042-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-007-9042-4

Keywords

Navigation