Skip to main content

Advertisement

Log in

Carnosine Inhibits Growth of Cells Isolated from Human Glioblastoma Multiforme

  • Published:
International Journal of Peptide Research and Therapeutics Aims and scope Submit manuscript

Abstract

The present study evaluates the effect of the naturally occurring dipeptide carnosine on primary cell cultures established from patients with glioblastoma multiforme. Surgically removed tumors were used to establish primary cell cultures that were incubated for 96 h with medium supplemented with carnosine at concentrations of 20, 40 and 50 mM. Following incubation, dehydrogenase activity, cellular adenosine triphosphate concentration (ATP), caspase activity, lactate dehydrogenase (LDH) release and the rate of DNA synthesis were determined. After 96 h of carnosine treatment a significant reduction in cellular ATP and dehydrogenase activity was detected already at a concentration of 20 mM carnosine. Carnosine (50 mM) reduced ATP concentration to 42.7 ± 13.5% (n = 6) and dehydrogenase activity to 41.0 ± 19.3% (n = 6) compared to untreated cells. Additional experiments revealed no sign of enhanced apoptosis or necrosis in the presence of carnosine. However, a quantitative bromo-desoxy-uridine-based proliferation assay demonstrated a clear effect of carnosine on DNA synthesis reducing its rate down to 50% (2 cultures) and 10% (4 cultures). Therefore, it can be concluded that carnosine is obviously able to inhibit proliferation of cells derived from glioblastoma. Since it is a naturally occurring substance that appears to be non-toxic to normal tissue and is able to penetrate the blood–brain barrier it may be a candidate for a therapeutic agent that may reduce proliferation of neoplastic cells even in vivo and especially in cases of glioblastoma multiforme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baran EJ (2000) Metal complexes of carnosine. Biochemistry (Mosc) 65:789–797

    CAS  Google Scholar 

  • Bauer K (2005) Carnosine and homocarnosine, the forgotten, enigmatic peptides of the brain. Neurochem Res 30:1339–1345

    Article  PubMed  CAS  Google Scholar 

  • Bauer K, Hallermayer K, Salnikow J, Kleinkauf H, Hamprecht B (1982) Biosynthesis of carnosine and related peptides by glial cells in primary culture. J Biol Chem 257:3593–3597

    PubMed  CAS  Google Scholar 

  • Boldyrev A, Song R, Lawrence D, Carpenter DO (1999) Carnosine protects against excitotoxic cell death independently of effects on reactive oxygen species. Neuroscience 94:571–577

    Article  PubMed  CAS  Google Scholar 

  • Boldyrev AA (2000) Problems and perspectives in studying the biological role of carnosine. Biochemistry (Mosc) 65:751–756

    CAS  Google Scholar 

  • Boldyrev AA, Severin SE (1990) The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzyme Regul 30:175–194

    Article  PubMed  CAS  Google Scholar 

  • Brandes AA (2003) State-of-the-art treatment of high-grade brain tumors. Semin Oncol 30:4–9

    Article  PubMed  Google Scholar 

  • Chez MG, Buchanan CP, Aimonovitch MC, Becker M, Schaefer K, Black C, Komen J (2002) Double-blind, placebo-controlled study of l-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol 17:833–837

    Article  PubMed  Google Scholar 

  • Crouch SP, Kozlowski R, Slater KJ, Fletcher J (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 160:81–88

    Article  PubMed  CAS  Google Scholar 

  • Fontana M, Pinnen F, Lucente G, Pecci L (2002) Prevention of peroxynitrite-dependent damage by carnosine and related sulphonamido pseudodipeptides. Cell Mol Life Sci 59:546–551

    Article  PubMed  CAS  Google Scholar 

  • Gallant S, Semyonova M, Yuneva M (2000) Carnosine as a potential anti-senescence drug. Biochemistry (Mosc) 65:866–868

    CAS  Google Scholar 

  • Gaunitz F, Heise K (2003) HTS compatible assay for antioxidative agents using primary cultured hepatocytes. Assay Drug Dev Technol 1:469–477

    Article  PubMed  CAS  Google Scholar 

  • Guiotto A, Calderan A, Ruzza P, Borin G (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315

    Article  PubMed  CAS  Google Scholar 

  • Gulewitsch W, Amiradzibi S (1900) Ueber das Carnosin, eine neue organische Base des Fleischextraktes. Ber Deut Chem Ges 33:1902–1903

    Article  CAS  Google Scholar 

  • Hipkiss AR (1998) Carnosine, a protective, anti-ageing peptide? Int J Biochem Cell Biol 30:863–868

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR (2007) Could carnosine or related structures suppress Alzheimer’s disease? J Alzheimers Dis 11:229–240

    PubMed  CAS  Google Scholar 

  • Hipkiss AR, Chana H (1998) Carnosine protects proteins against methylglyoxal-mediated modifications. Biochem Biophys Res Commun 248:28–32

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR, Michaelis J, Syrris P (1995) Non-enzymatic glycosylation of the dipeptide l-carnosine, a potential anti-protein-cross-linking agent. FEBS Lett 371:81–85

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR, Preston JE, Himsworth DT, Worthington VC, Keown M, Michaelis J, Lawrence J, Mateen A, Allende L, Eagles PA, Abbott NJ (1998a) Pluripotent protective effects of carnosine, a naturally occurring dipeptide. Ann N Y Acad Sci 854:37–53

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR, Preston JE, Himswoth DT, Worthington VC, Abbot NJ (1997) Protective effects of carnosine against malondialdehyde-induced toxicity towards cultured rat brain endothelial cells. Neurosci Lett 238:135–138

    Article  PubMed  CAS  Google Scholar 

  • Hipkiss AR, Worthington VC, Himsworth DT, Herwig W (1998b) Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Biochim Biophys Acta 1380:46–54

    PubMed  CAS  Google Scholar 

  • Holliday R, McFarland GA (1996) Inhibition of the growth of transformed and neoplastic cells by the dipeptide carnosine. Br J Cancer 73:966–971

    PubMed  CAS  Google Scholar 

  • Holliday R, McFarland GA (2000) A role for carnosine in cellular maintenance. Biochemistry (Mosc) 65:843–848

    CAS  Google Scholar 

  • Jagannathan J, Prevedello DM, Dumont AS, Laws ER (2006) Cellular signaling molecules as therapeutic targets in glioblastoma multiforme. Neurosurg Focus 20:E8

    Article  PubMed  Google Scholar 

  • Kalyankar GD, Meister A (1959) Enzymatic synthesis of carnosine and related beta-alanyl and gamma-aminobutyryl peptides. J Biol Chem 234:3210–3218

    PubMed  CAS  Google Scholar 

  • Kangas L, Gronroos M, Nieminen AL (1984) Bioluminescence of cellular ATP: a new method for evaluating cytotoxic agents in vitro. Med Biol 62:338–343

    PubMed  CAS  Google Scholar 

  • Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85:3175–3179

    Article  PubMed  CAS  Google Scholar 

  • Margolis FL (1980) Carnosine: an olfactory neuropeptide. In: Barker JL, Smith TG Jr (eds) The role of peptides in neuronal function. Marcel Decker, New York, pp 545–572

  • McFarland GA, Holliday R (1994) Retardation of the senescence of cultured human diploid fibroblasts by carnosine. Exp Cell Res 212:167–175

    Article  PubMed  CAS  Google Scholar 

  • Nadi NS, Hirsch JD, Margolis FL (1980) Laminar distribution of putative neurotransmitter amino acids and ligand binding sites in the dog olfactory bulb. J Neurochem 34:138–146

    Article  PubMed  CAS  Google Scholar 

  • Norden AD, Wen PY (2006) Glioma therapy in adults. Neurologist 12:279–292

    Article  PubMed  Google Scholar 

  • Pisano JJ, Wilson JD, Cohen L, Braham D, Udenfried S (1961) Isolation of gamma-aminobutyrylhistidine (homocarnosine) from brain. J Biol Chem 236:499–502

    PubMed  CAS  Google Scholar 

  • Preston JE, Hipkiss AR, Himsworth DT, Romero IA, Abbott JN (1998) Toxic effects of beta-amyloid(25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and beta-alanine. Neurosci Lett 242:105–108

    Article  PubMed  CAS  Google Scholar 

  • Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 13:379–444

    Article  PubMed  CAS  Google Scholar 

  • Reddy VP, Garrett MR, Perry G, Smith MA (2005) Carnosine: a versatile antioxidant and antiglycating agent. Sci Aging Knowledge Environ 18:e12

    Google Scholar 

  • Schulz M, Hamprecht B, Kleinkauf H, Bauer K (1987) Peptide uptake by astroglia-rich brain cultures. J Neurochem 49:748–755

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Perry TL, Nutzenadel W (1983), In: Stanbury JB et al. (eds) The metabolic basis of inherited disease, 5th edn. McGraw-Hill, New York, pp 570–585

  • Smith EC (1938) The buffering of muscle in rigor; protein, phosphate and carnosine. J Physiol 92:336–343

    PubMed  CAS  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  PubMed  CAS  Google Scholar 

  • Teuscher NS, Novotny A, Keep RF, Smith DE (2000) Functional evidence for presence of PEPT2 in rat choroid plexus: studies with glycylsarcosine. J Pharmacol Exp Ther 294:494–499

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Mr. Baran-Schmidt for technical assistance in preparing the primary cultures of glioblastomas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gaunitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renner, C., Seyffarth, A., de Arriba, S.G. et al. Carnosine Inhibits Growth of Cells Isolated from Human Glioblastoma Multiforme. Int J Pept Res Ther 14, 127–135 (2008). https://doi.org/10.1007/s10989-007-9121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10989-007-9121-0

Keywords

Navigation