Skip to main content
Log in

Effect of telmisartan on cardiovascular complications associated with streptozotocin diabetic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Angiotensin receptor blockers provide cardiovascular protection in heart failure patients. We have studied the effect of 8 weeks treatment with telmisartan (5 mg kg−1 day−1) on cardiovascular complications associated with streptozotocin (STZ) diabetic rats. Wistar rats were made diabetic with STZ (45 mg kg−1, iv). Various biochemical and cardiac parameters were measured at the end of 8 weeks. STZ produced hyperglycemia, hypoinsulinemia, hyperlipidemia, increased blood pressure, increased creatinine, cardiac enzyme and C-reactive protein (CRP) levels, reduction in heart rate and cardiac hypertrophy. Chronic treatment with telmisartan significantly (P < 0.05) prevented STZ induced hypertension and elevated fasting glucose level with simultaneous increase in serum insulin levels. It significantly (P < 0.05) reduced the elevated cholesterol, very low density lipoprotein (VLDL) and triglyceride levels in diabetic rats and increased the lower high density lipoprotein (HDL)-cholesterol levels. Further, telmisartan produced a significant (P < 0.05) reduction in the elevated creatinine levels, CRP and levels of other cardiac enzyme markers like Lactate de-hydrogenase and creatinine kinase of diabetic rats. STZ-induced bradycardia was also prevented by telmisartan treatment and it also produced beneficial effect by preventing cardiac hypertrophy as evident from left ventricular collagen levels, cardiac hypertrophy index and left ventricular hypertrophy index of diabetic rats. Our data suggest that telmisartan prevents not only the STZ-induced metabolic abnormalities, but also cardiovascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. McGill HC Jr, McMahan CA (1998) Determinants of atherosclerosis in the young: pathobiological determinants of atherosclerosis in youth (PDAY) research group. Am J Cardiol 82:30T–36T

    Article  PubMed  Google Scholar 

  2. Zhi YF, Johannes BP, Marwick JH (2004) Diabetic cardiomyopathy: evidences, mechanism and therapeutic implications. Endocr Rev 25(4):543–567

    Article  CAS  Google Scholar 

  3. Arauz-Pacheco C, Parrott MA, Raskin P (2002) The treatment of hypertension in adult patients with diabetes. Diabetes Care 25:134–147

    Article  PubMed  Google Scholar 

  4. Higaki J, Baba S, Katsuya T, Katsuya T, Sato N, Ishikawa K, Mannami T, Ogata J, Ogihara T (2000) Deletion allele of angiotensin-converting enzyme gene increases risk of essential hypertension in Japanese men. The Suita study. Circulation 101:2060–2065

    PubMed  CAS  Google Scholar 

  5. Burnier M, Brunner HR (2000) Angiotensin II receptor antagonists. Lancet 355:637–645

    Article  PubMed  CAS  Google Scholar 

  6. Stoll M, Unger T (2001) Angiotensin and its AT2 receptor: new insights into an old system. Regul Pept 99:175–182

    Article  PubMed  CAS  Google Scholar 

  7. Siragy HM (2002) Angiotensin receptor blockers: how important is selectivity? Am J Hypertens 15:1006–1014

    Article  PubMed  CAS  Google Scholar 

  8. Benedict CR, Francis GS, Shelton B et al for the SOLVD Investigators (1995) Effect of long-term enalapril therapy on neurohormones in patients with left ventricular dysfunction. Am J Cardiol 75:1151–1157

    Google Scholar 

  9. Struthers AD (1995) Aldosterone escape during ACE inhibitor therapy in chronic heart failure. Eur Heart J 16:103–106

    PubMed  CAS  Google Scholar 

  10. Kjeldsen SE, Julius S (2004) Hypertension mega-trials with cardiovascular end points: effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Am Heart J 148:747–754

    Article  PubMed  CAS  Google Scholar 

  11. Kakuta H, Sudoh K, Sasamatsu M, Yamagishi S (2005) Telmisartan has the strongest binding affinity to angiotensin II type 1 receptor blockers. Int J Clin Pharm Res 25(1):41–46

    CAS  Google Scholar 

  12. Benson SC, Pershadsingh HA, Ho C, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγ—modulating activity. Hypertension 43:993–1002

    Article  PubMed  CAS  Google Scholar 

  13. Takano H, Hasegawa H, Zou Y, Komuro I (2004) Pleiotropic actions of PPAR gamma activators thiazolidinediones in cardiovascular diseases. Curr Pharm Des 10:2779–2786

    Article  PubMed  CAS  Google Scholar 

  14. Goebel M, Clemenz M, Unger T (2006) Effective treatment of hypertension by AT 1 receptor antagonism: the past and future of telmisartan. Expert Rev Cardiovasc Ther 4(5):615–620

    Article  PubMed  CAS  Google Scholar 

  15. Yamagishi S, Takeuchi M (2005) Telmisartan is a promising cardiometabolic sartan due to its unique PPAR-g-inducing property. Med Hypotheses 64:476–478

    Article  PubMed  CAS  Google Scholar 

  16. Prockop DJ, Udenfriend S (1960) A specific method for the analysis of hydroxyproline in tissues and urine. Anal Biochem 1(3):228–239

    Article  PubMed  CAS  Google Scholar 

  17. Umrani DN, Goyal RK (2002) Beneficial effects of fenoldopam treatment on renal functions in streptozotocin induced diabetic rats. Clin Exp Hypertens 24(3):207–219

    Article  PubMed  CAS  Google Scholar 

  18. Goyal RK (1999) Hyperinsulinemia and insulin resistance in hypertension: differential effects of antihypertensive agents. Clin Exp Hypertens 21:167–179

    Article  PubMed  CAS  Google Scholar 

  19. Pershadsingh HA, Benson SC, Ho CI, Avery MA, Kurtz TW (2003) Identification of PPAR-activators that do not promote fluid retention and edema: implications for treating insulin resistant hypertension and the metabolic syndrome. In: Proceedings of the endocrine society symposium on nuclear receptors in cardiovascular disease, hot topics in endocrinology. San Diego, CA, Abstract 29

  20. Dahm K, Tikellis C, Reid CM, Johnston CI, Cooper ME (2005) Why blockade of the renin-angiotensin system reduces the incidence of new-onset diabetes. J Hypertens 23:463–473

    Article  Google Scholar 

  21. Taskinen M (1992) Quantitative and qualitative lipoprotein abnormalities in diabetes mellitus. Diabetes 41:12–17

    Article  PubMed  Google Scholar 

  22. Bowie A, Owens D, Collins P, Johnson A, Tomkin GH (1993) Glycosylated low density lipoprotein is more sensitive to oxidation: implications for the diabetic patient? Atherosclerosis 102:63–67

    Article  PubMed  CAS  Google Scholar 

  23. Li DY, Zhang YC, Philips MI, Sawamura T, Mehta JL (1999) Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ Res 84:1043–1049

    PubMed  CAS  Google Scholar 

  24. Chen H, Li D, Sawamura T, Inoue K, Mehta JL (2000) Upregulation of LOX-1 expression in aorta of hypercholesterolemic rabbits: modulation by losartan. Biochem Biophys Res Commun 276:1100–1104

    Article  PubMed  CAS  Google Scholar 

  25. Morawietz H, Rueckschloss U, Niemann B, Duerrschmidt N, Galle J, Hakim K, Zerkowski HR, Sawamura T, Holtz J (1999) Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation 100:899–902

    PubMed  CAS  Google Scholar 

  26. Kannel WB (1987) Metabolic risk factors for coronary heart disease in women. Perspective from the Framingham study. Am Heart J 114:413–419

    Article  PubMed  CAS  Google Scholar 

  27. Castelli WP (1986) The triglyceride issue: a view from Framingham. Am Heart J 287:413–419

    Google Scholar 

  28. Bhakdi S, Toprzewski M, Klouche M, Hemmes M (1999) Complement and atherogenesis. Binding of CRP to degraded, nonoxidised LDL enhance complement activation. Arterioscler Thromb Vasc Biol 19:2348–2354

    PubMed  CAS  Google Scholar 

  29. de Beer FC, Hind CRK, Fox KM, Allan R, Maseri A, Pepys MB (1982) Measurement of serum C-reactive protein concentration in myocardial ischaemia and infarction. Br Heart J 47:239–243

    Article  PubMed  Google Scholar 

  30. Rani SH, Rao DV, Prakash SM, Jyothy A (2003) Serum Adenosine deaminase activity and C-reactive protein levels in unstable angina. Indian J Human Genet 9(1):17–20

    Google Scholar 

  31. Chase HP, Cooper S, Osberg I, Stene LC, Barriga K, Norris J, Eisenbarth GS, Rewers M (2004) Elevated C-reactive protein levels in the development of type 1 diabetes. Diabetes 53:2569–2573

    Article  PubMed  CAS  Google Scholar 

  32. Pradhan A, Manson J, Rifai N, Buring J, Ridker P (2001) C-reactive protein, interleukin-6, and risk of developing type 2 diabetes mellitus. JAMA 286:327–334

    Article  PubMed  CAS  Google Scholar 

  33. Yoshida S, Yamsgishi K, Nakamura T, Matsui T, Imaizumi M, Takeuchi H, Koga T, Ueno, Sata M (2006) Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferators activated receptor-γ activation. Diabetologia 49(11):3094–3099

  34. Howard-Alpe GM, Sear JW, Foex P (2006) Methods of detecting atherosclerosis in non-cardiac surgical patients; the role of biochemical markers. Brit J Anaesth 97(6):758–769

    Article  PubMed  CAS  Google Scholar 

  35. Huang E, Kuo W, Chen Y, Chen T, Chang M, Lu M, Tzang B, Hsu H, Huang C, Lee S (2006) Homocysteine and other biochemical parameters in type 2 diabetes mellitus with different diabetic duration or diabetic retinopathy. Clinica Himica Acta 366(1–2):293–298

    Article  CAS  Google Scholar 

  36. Hagar HH (2002) Folic acid and vitamin B12 supplementation attenuates isoprenaline-induced myocardial infarction in experimental hyperhomocysteinemic rats. Pharmacol Res 46(3):213–219

    Article  PubMed  CAS  Google Scholar 

  37. Williamson JR, Kilo C (1976) Capillary basement membrane thickening and diabetic microangiopathy. Diabetes 25:925–927

    Article  PubMed  CAS  Google Scholar 

  38. Kannel WB, McGee DL (1979) Diabetes and glucose tolerance as risk factors for cardiovascular disease: the Framingham study. Diabetes Care 2:120–126

    Article  PubMed  CAS  Google Scholar 

  39. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907

    PubMed  CAS  Google Scholar 

  40. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 105:1387–1393

    Article  PubMed  Google Scholar 

  41. Brilla CG, Zhou G, Rupp H, Maisch B, Weber KT (1995) Role of angiotensin II and prostaglandin E2 in regulating cardiac fibroblast collagen turnover. Am J Cardiol 76:80–130

    Article  Google Scholar 

  42. Takenaka H, Kihara Y, Iwanaga Y, Onozawa Y, Toyokuni S, Kita T (2006) Angiotensin II, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension. J Mol Cell Cardiol 41(6):989–997

    Article  PubMed  CAS  Google Scholar 

  43. Jesmin S, Sakuma I, Hattori Y, Kitabatake A (2003) Role of angiotensin II in altered expression of molecules responsible for coronary matrix remodeling in insulin-resistant diabetic rats. Arterioscler Thromb Vasc Biol 23:2021–2026

    Article  PubMed  CAS  Google Scholar 

  44. Gorden T, Kannel WB (1971) Premature mortality from coronary heart disease. The Framingham study. JAMA 215:1617–1625

    Article  Google Scholar 

  45. Grossman E, Shemesh J, Shamiss A, Thaler M, Carroll J, Rosenthal T (1992) Left ventricular mass in diabetes. Arch Int Med 152:5

    Article  Google Scholar 

  46. Sun Y, Zhang JQ, Zhang J, Ramires FJ (1995) Angiotensin II, transforming growth factor-β1 and repair in the infarcted heart. J Mol Cell Cardiol 30:1559–1569

    Article  Google Scholar 

  47. Smits JFM, Krimpen C, Schoemaker RG, Cleutjens JPM, Daemen MJAP (1992) Angiotensin II receptor blockade after myocardial infarction in rats: effects on hemodynamics, myocardial DNA synthesis, and interstitial collagen content. J Cardiovasc Pharmacol 20:772–778

    Article  PubMed  CAS  Google Scholar 

  48. Funakawa S (1983) Renin angiotensin system and prostacyclin biosynthesis in STZ diabetic rats. Eur J Pharmacl 94:27–33

    Article  CAS  Google Scholar 

  49. Goebel M, Clemenz M, Unger T (2006) Effective treatment of hypertension by AT 1 receptor antagonism: the past and future of telmisartan. Expert Rev Cardiovasc Ther 4(5):615–620

    Article  PubMed  CAS  Google Scholar 

  50. Savarese JJ, Berkowitz BA (1979) Beta adrenergic receptors decrease in diabetic rat hearts. Life Sci 25:2075–2078

    Article  PubMed  CAS  Google Scholar 

  51. Ferrario CM, Ueno Y, Diz DJ, Bannes KL (1986) The renin-angiotensin system: physiological actions on the central nervous system. In: Zanchetti A, Tarazi C (eds) Handbook of hypertension, vol. 8. Elsevier Science Publishers, Amsterdam, the Netherlands, pp 431–454

    Google Scholar 

  52. Oliveira DR, Santos RA, Santos GF, Khosla MC, Campagnole-Santos MJ (1996) Changes in the baroreflex control of heart rate produced by central infusion of selective angiotensin antagonists in hypertensive rats. Hypertension 27:1284–1290

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita A. Mehta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goyal, B.R., Mesariya, P., Goyal, R.K. et al. Effect of telmisartan on cardiovascular complications associated with streptozotocin diabetic rats. Mol Cell Biochem 314, 123–131 (2008). https://doi.org/10.1007/s11010-008-9772-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9772-y

Keywords

Navigation