Skip to main content
Log in

Preventive effect of S-allyl cysteine sulphoxide (Alliin) on mitochondrial dysfunction in normal and isoproterenol induced cardiotoxicity in male Wistar rats: a histopathological study

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study was undertaken to evaluate the preventive role of S-allyl cysteine sulphoxide (SACS) in isoproterenol (ISO)-induced cardiotoxicity in male Wistar rats. Myocardial infarction was induced by subcutaneous injection of ISO (150 mg/kg) once a day for 2 days. SACS (40 and 80 mg/kg) was given as pretreatment orally daily for a period of 35 days using an intragastric tube. SACS pretreatment significantly lowered thiobarbituric acid reactive substances (TBARS) and increased the activities of mitochondrial superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione S-transferase (GST), and the concentration of reduced glutathione (GSH) in myocardial infarcted rats. SACS pretreatment also increased significantly the levels of mitochondrial phospholipids and decreased the levels of mitochondrial cholesterol, free fatty acids (FFAs), triglycerides (TGs) and calcium, and the activity of xanthine oxidase (XOD) in heart. Further, the activities of isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), α-ketoglutarate dehydrogenase (α-KGDH), NADH-dehydrogenase, and cytochrome C-oxidase were significantly elevated in the mitochondrial fraction of the heart in the SACS-pretreated ISO-induced rats. Oral administration of SACS for a period of 35 days to the normal control rats did not show any significant effect. Histopathological studies of the myocardial tissue showed a protective role of SACS in the myocardial-infarcted rats. The effect at a dose of SACS 80 mg/kg was more effective than the dose 40 mg/kg. The results of the study conclude that SACS protect the mitochondria of the ISO-induced myocardial-infarcted rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-pulkki L (1997) Apoptosis in human acute myocardial infarction. Circulation 95:320–323

    PubMed  CAS  Google Scholar 

  2. Marin GJ, Goldnethal MJ (2002) Understanding the impact of mitochondrial defects in cardiovascular disease: a review. J Card Fail 8:347–361. doi:10.1054/jcaf.2002.127774

    Article  Google Scholar 

  3. Burton KP, McCord JM, Ghai G (1984) Myocardial alterations due to free radical generation. Am J Physiol Heart Circ Physiol 246:776–783

    Google Scholar 

  4. Kalyanaraman B, Konorev EA, Joseph J, Baker JE (1994) Radical generation and detection in myocardial injury. In: Rice-Evans CA, Burdon RH (eds) Free radical damage and its control. Elsevier Science, Amsterdam, pp 333–355

    Chapter  Google Scholar 

  5. Richter C, Par JW, Ames B (1998) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467. doi:10.1073/pnas.85.17.6465

    Article  Google Scholar 

  6. Hornstra G, Barth CA, Galli C (1998) Functional food science and cardiovascular system. Br J Nutr 80:S113–S146. doi:10.1079/BJN19980107

    Article  PubMed  CAS  Google Scholar 

  7. Zhang XH, Lowe D, Gilies P, Fell S, Connecl MJ, Maslin DJ (2001) Gender may affect the action of garlic oil on plasma cholesterol and glucose levels of normal subjects. J Nutr 131:1471–1478

    PubMed  CAS  Google Scholar 

  8. Ou CC, Tsao SM, Lin MC, Yin MC (2003) Protective action on human LDL against oxidation and glycation by four organosulfur compounds derived from garlic. Lipids 38:219–224. doi:10.1007/s11745-003-1054-4

    Article  PubMed  CAS  Google Scholar 

  9. Rahman K (2003) Garlic and aging: new insights into an old remedy. Ageing Res Rev 2:39–56. doi:10.1016/S1568-1637(02)00049-1

    Article  PubMed  Google Scholar 

  10. Nakamura H, Ishikawa M (1971) Effect of S-allyl cysteine sulphoxide on cholesterol metabolism. Kanzo 12:673–675

    Google Scholar 

  11. Sheela CG, Augusti KT (1992) Effect of S-allyl cysteine sulphoxide isolated from Allium sativum Linn and gugulipid in some enzymes and fecal excretion of bile acids and sterols in cholesterol fed rats. Indian J Exp Biol 33:337–341

    Google Scholar 

  12. Sheela CG, Agusti KT (1995) Antiperoxide effects of S-allyl cysteine sulphoxide isolated from Allium sativum Linn and gugulipid in cholesterol fed rats. Indian J Exp Biol 33:337–341

    PubMed  CAS  Google Scholar 

  13. Le Bon AM, Vernevaut MF, Gunent L, Kahane R, Arnault I, Auger J, Haffner T, Siess MH (2003) Effects of garlic powders with varying alliin contents on hepatic drug metabolizing enzymes in rats. J Agric Food Chem 51:7617–7623. doi:10.1021/jf0346758

    Article  PubMed  Google Scholar 

  14. Sangeetha T, Darlin Quine S (2006) Preventive effect of S-allyl cysteine sulfoxide (alliin) on cardiac marker enzymes and lipids in isoproterenol induced myocardial injury. J Pharm Pharmacol 58:617–623. doi:10.1211/jpp.58.5.0006

    Article  PubMed  CAS  Google Scholar 

  15. Sangeetha T, Darlin Quine S (2006) Antilipoperoxidative and antioxidant effects of S-allyl cysteine sulfoxide on isoproterenol induced myocardial infarction in Wistar rats. J Biochem Mol Toxicol 20:167–173. doi:10.1002/jbt.20132

    Article  PubMed  CAS  Google Scholar 

  16. Sangeetha T, Darlin Quine S (2006) Preventive effect of S-allyl cysteine sulfoxide (alliin) on lysosomal hydrolases and membrane bound ATPases in isoproterenol-induced myocardial infarction in Wistar rats. J Biochem Mol Toxicol 21:118–124. doi:10.1002/jbt.20166

    Article  Google Scholar 

  17. Johnson D, Lardy H (1967) Methods in enzymology. In: Estabrook RW (ed) Isolation of liver or kidney mitochondria. Academic Press, London, pp 94–96

    Google Scholar 

  18. Fraga CG, Leibovitz BF, Toppell AL (1988) Lipid peroxidation measured as thiobarbituric acid-reactive substances in tissue slices: characterization and comparison with homogenates and microsomes. Free Radic Biol Med 4:155–161. doi:10.1016/0891-5849(88)90023-8

    Article  PubMed  CAS  Google Scholar 

  19. Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    PubMed  CAS  Google Scholar 

  20. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394. doi:10.1016/0003-2697(72)90132-7

    Article  PubMed  CAS  Google Scholar 

  21. Rotruck JT, Pope AL, Ganther HE, Swason AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590. doi:10.1126/science.179.4073.588

    Article  PubMed  CAS  Google Scholar 

  22. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione-S-transferase. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    PubMed  CAS  Google Scholar 

  23. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77. doi:10.1016/0003-9861(59)90090-6

    Article  PubMed  CAS  Google Scholar 

  24. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  25. Zilversmit BB, Davis AK (1950) Microdetermination of plasma phospholipids by TCA precipitation. J Lab Clin Med 35:155–161

    PubMed  CAS  Google Scholar 

  26. Falholt K, Lund B, Falholt W (1973) An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin Chim Acta 46:105–111. doi:10.1016/0009-8981(73)90016-8

    Article  PubMed  CAS  Google Scholar 

  27. Zlatkis A, Zak B, Boyle GJ (1953) A Simple method for determination of serum cholesterol. J Clin Med 41:486–492

    CAS  Google Scholar 

  28. Bergmeyer HU, Gawehn K, Grassl M (1974) Xanthine oxidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic Press, New York, pp 521–522

    Google Scholar 

  29. King J (1965) Isocitrate dehydrogenase. In: Van D (ed) Practical clinical enzymology. Nostrand Co., London, p 363

    Google Scholar 

  30. Slater EC, Bonner WD (1952) The effect of fluoride on succinate oxidase system. Biochem J 52:185–196

    PubMed  CAS  Google Scholar 

  31. Mehler AH, Kornberg A, Grisolia S, Ochoa S (1948) The enzymatic mechanism of oxidation-reductions between malate or isocitrate and pyruvate. J Biol Chem 174:961–977

    PubMed  CAS  Google Scholar 

  32. Reed LJ, Mukherjee RB (1969) α-Ketoglutarate dehydrogenase complex from Escherichia coli. In: Lowenstein MJ (ed) Methods in enzymology. Academic Press, London, pp 53–61

    Google Scholar 

  33. Minakami S, Ringler RL, Singer TP (1962) Studies on the respiratory chain linked dihydrodiphosphopyridine nucleotide dehydrogenase-1. Assay of the enzyme in particulate and in soluble preparations. J Biol Chem 237:569–576

    PubMed  CAS  Google Scholar 

  34. Pearl W, Cascarano J, Zweifach BW (1963) Microdetermination of cytochrome oxidase in rat tissues by oxidation on N-phenyl-p-phenylenediamine or ascorbic acid. J Histochem Cytochem 11:102–104

    CAS  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  36. Korkina LG, Afanas’ev IB (1997) Antioxidant and chelating properties of flavonoids. Adv Pharmacol 38:151–163. doi:10.1016/S1054-3589(08)60983-7

    Article  PubMed  CAS  Google Scholar 

  37. Raghavendran HRB, Sathivel A, Devaki T (2005) Antioxidant effect of Sargasum polycystum against acetaminophen induced changes in hepatic mitochondrial enzymes during toxic hepatitis. Chemosphere 61:276–281. doi:10.1016/j.chemosphere.2005.01.049

    Article  Google Scholar 

  38. Sathish V, Vimal V, Ebenezar KK, Devaki T (2002) Synergistic effect of nicorandil and amlodipine on mitochondrial function during isoproterenol induced myocardial infarction in rats. J Pharm Pharmacol 54:133–137. doi:10.1211/0022357021771841

    Article  PubMed  CAS  Google Scholar 

  39. Sathish V, Ebenezar KK, Devaki T (2003) Biochemical changes on the cardioprotective effect of nicorandil and amlodipine during experimental myocardial infarction in rats. Pharmacol Res 48:565–570. doi:10.1016/S1043-6618(03)00223-8

    Article  PubMed  CAS  Google Scholar 

  40. Chenko DI, Sopka NV, Kalinkin MN, Khanina NIA, Chelnokov VS (1990) The metabolic changes in myocardial subcellular fractions in the pathogenesis of ischemic heart disease. Patol Fiziol Eksp Ter 2:16–20

    Google Scholar 

  41. Starkov AA, Polster BM, Fiskum G (2002) Regulation of hydrogen peroxide production by brain mitochondria by Calcium and Bax. J Neurochem 83:220–228. doi:10.1046/j.1471-4159.2002.01153.x

    Article  PubMed  CAS  Google Scholar 

  42. Prasad K, Kalra J, Bharadwaj L (1993) Cardiac depressant effects of oxygen free radicals. Angiology 44:257–270. doi:10.1177/000331979304400401

    Article  PubMed  CAS  Google Scholar 

  43. Thirunavukkarasu C, Vijeya Singh JP, Selvendiran K, Sakthisekaran D (2001) Chemopreventive efficacy of selenium against N-nitrosodiethylamine-induced hepatoma in albino rats. Cell Biochem Funct 19:265–271. doi:10.1002/cbf.924

    Article  PubMed  CAS  Google Scholar 

  44. Vijayapadma V, Shaymaladevi CS (2001) Effect of fish oil on mitochondrial respiration in isoproterenol induced myocardial infarction in rats. Indian J Exp Biol 40:268–272

    Google Scholar 

  45. Guo Z, Muller D, Pentz R, Kress G, Siegers CP (1990) Bioavailability of sulphur containing ingredients of garlic in the rat. Planta Med 56:692. doi:10.1055/s-2006-961372

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Yukihiro Kodera, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan, for the generous gift of S-allyl cysteine sulphoxide (Alliin). For histopathological studies, the assistance of Prof. P. Viswanathan, Department of Pathology, Rajah Muthiah Medical College and Hospital, Annamalai University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Darlin Quine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangeetha, T., Darlin Quine, S. Preventive effect of S-allyl cysteine sulphoxide (Alliin) on mitochondrial dysfunction in normal and isoproterenol induced cardiotoxicity in male Wistar rats: a histopathological study. Mol Cell Biochem 328, 1–8 (2009). https://doi.org/10.1007/s11010-009-0066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0066-9

Keywords

Navigation