Skip to main content
Log in

MAP kinases in proliferating human colon cancer Caco-2 cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The mitogen-activated protein kinase (MAPK) cascade is one of the most ubiquitous signal transduction systems and is rapidly activated by various stimuli, such as cellular stress and death. The Caco-2 cell line is an in vitro model for colon cancer studies. We investigated the activation status of the ERK1/2, p38, JNK1/2, and ERK5 kinases and their respective upstream intracellular activators in Caco-2 cells induced to proliferate by 10% fetal bovine serum (FBS). The states of phosphorylation of the above MAPKs and their upstream kinases, MEK1/2, MKK3/6, MKK4, and MKK7, respectively, were studied by Western blot analysis. Phosphorylation was barely detectable before serum stimulation, and the stimulation of cell proliferation by the addition of FBS increased MEK1/2 and ERK1/2 phosphorylation 2 to 3 fold after 3 min. FBS stimulated p38 and MKK3/6 to the same extent within 2 min of treatment and JNK1/2 and its upstream kinases MKK4 and MKK7 5-fold (3 min). Addition of FBS also rapidly phosphorylated ERK5 (2 to 3.5-fold between 2 and 5 min) and the transcription factor CREB. Incubation of Caco-2 cells with FBS was followed by a rapid induction of c-Fos and c-Myc expression. Studies with ERK1/2 specific inhibitor PD98059, p38 MAPK inhibitor SB203580, or JNK inhibitor SP600125 showed that FBS regulates Caco-2 cell proliferation via the three MAPK pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Robinson MJ, Cobb MH (1997) Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 2:180–186. doi:10.1016/S0955-0674(97)80061-0

    Article  Google Scholar 

  2. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  3. Daum G, Eisenmann-Tappe I, Fries HW, Troppmair J, Rapp UR (1994) The ins and outs of Raf kinases. Trends Biochem Sci 11:474–480. doi:10.1016/0968-0004(94)90133-3

    Article  Google Scholar 

  4. Chang CI, Xu BE, Akella R, Cobb MH, Goldsmith EJ (2002) Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell 9:1241–1249. doi:10.1016/S1097-2765(02)00525-7

    Article  PubMed  CAS  Google Scholar 

  5. Tanoue T, Adachi M, Moriguchi T, Nishida E (2000) A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2:110–116. doi:10.1038/35000065

    Article  PubMed  CAS  Google Scholar 

  6. Whitmarsh AJ, Davis RJ (1998) Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals. Trends Biochem Sci 23:481–485. doi:10.1016/S0968-0004(98)01309-7

    Article  PubMed  CAS  Google Scholar 

  7. Zweibaum A, Laburthe M, Grasset E, Louvard D (1991) Use of cultured cell lines in studies of intestinal cell differentiation and function. In: Frizzell R, Fields H (ed) Handbook of physiology: the gastrointestinal system IV, Chapter 7. Alan Liss, New York, pp 223–255

  8. Masui T, Wakefield LM, Lechner JF, Laveck MA, Sporn MB, Harris CC (1986) Type b transforming growth factor is the primary differentiation-inducing serum factor for normal human bronchial epithelial cells. Proc Natl Acad Sci USA 83:2438–2442. doi:10.1073/pnas.83.8.2438

    Article  PubMed  CAS  Google Scholar 

  9. Bradford (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  10. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  11. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13. doi:10.1016/S0898-6568(99)00071-6

    Article  PubMed  CAS  Google Scholar 

  12. Cano E, Mahadevan LC (1995) Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20:117–122. doi:10.1016/S0968-0004(00)88978-1

    Article  PubMed  CAS  Google Scholar 

  13. Ip Y, Davis R (1998) Signal transduction by the c-Jun N-terminal kinase (JNK) from inflammation to development. Curr Opin Cell Biol 10:205–219. doi:10.1016/S0955-0674(98)80143-9

    Article  PubMed  CAS  Google Scholar 

  14. Nebreda AR, Porras A (2000) p38 MAP kinases: beyond the stress response. Trends Biochem Sci 25:257–260. doi:10.1016/S0968-0004(00)01595-4

    Article  PubMed  CAS  Google Scholar 

  15. Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  16. Nishimoto S, Nishida E (2006) MAPK signalling: ERK5 versus ERK1/2. EMBO Rep 7:782–786. doi:10.1038/sj.embor.7400755

    Article  PubMed  CAS  Google Scholar 

  17. Brancho D, Tanaka N, Jaeschke A, Ventura JJ, Kelkar N, Tanaka Y, Kyuuma M, Takeshita T, Flavell RA, Davis RJ (2003) Mechanism of p38 MAP kinase activation in vivo. Genes Dev 17:1969–1978. doi:10.1101/gad.1107303

    Article  PubMed  CAS  Google Scholar 

  18. Cohen P (1997) The search for physiological substrates of MAP and SAP kinases in mammalian cells. Trends Cell Biol 7:353–361. doi:10.1016/S0962-8924(97)01105-7

    Article  PubMed  CAS  Google Scholar 

  19. Li B, Kaetzel MA, Dedman JR (2006) Signaling pathways regulating murine cardiac CREB phosphorylation. Biochem Biophys Res Commun 350:179–184. doi:10.1016/j.bbrc.2006.09.016

    Article  PubMed  CAS  Google Scholar 

  20. Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275. doi:10.1016/j.tibs.2006.03.009

    Article  PubMed  CAS  Google Scholar 

  21. Gum RJ, Mc Laughlin MM, Kumar S, Wang Z, Bower MJ, Lee JC, Adams JL, Livi GP, Goldsmith EJ, Young PR (1998) Acquisition of sensitivity of stress-activated protein kinases to the p38 inhibitor, SB 203580, by alteration of one or more amino acids within the ATP binding pocket. J Biol Chem 273:15605–15610. doi:10.1074/jbc.273.25.15605

    Article  PubMed  CAS  Google Scholar 

  22. Goedert M, Cuenda A, Craxton M, Jakes R, Cohen P (1997) Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J 16:3563–3571. doi:10.1093/emboj/16.12.3563

    Article  PubMed  CAS  Google Scholar 

  23. Bennet BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson DW (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 98:13681–13686. doi:10.1073/pnas.251194298

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Agencia Nacional de Promoción Cientifica y Tecnológica, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Universidad Nacional del Sur, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Russo de Boland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buzzi, N., Colicheo, A., Boland, R. et al. MAP kinases in proliferating human colon cancer Caco-2 cells. Mol Cell Biochem 328, 201–208 (2009). https://doi.org/10.1007/s11010-009-0090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0090-9

Keywords

Navigation