Skip to main content

Advertisement

Log in

Bioavailability and metabolism of fucoxanthin in rats: structural characterization of metabolites by LC-MS (APCI)

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study reports bioavailability and metabolism of fucoxanthin (FUCO) from brown algae Padina tetrastromatica in rats. Rats were divided into two groups (n = 25/group). Group one was fed basal diet (control) while the group two received retinol deficient diet (RD group) for 8 weeks. After confirmed RD in blood (0.53 μmol/l), rats were further sub-grouped (n = 5/sub group), intubated a dose of FUCO (0.83 μmol) and killed after 0, 2, 4, 6 and 8 h. The plasma levels (area under curve/8 h) of FUCO (fucoxanthinol (FUOH) + amarouciaxanthin (AAx)) was 2.93 (RD group) and 2.74 pmol/dl (control), respectively. No newly formed retinol was detected in RD rats intubated with FUCO. Besides FUOH (m/z 617 (M+H)+) and AAx (m/z 617 (M+H)+), other deacetylated, hydrolyzed and demethylated metabolites of bearing molecular mass at m/z 600.6 (FUOH–H2O), m/z 597 (AAx–H2O), m/z 579 (AAx–2H2O+1), m/z 551 (AAx–2H2O–2CH3+2) and m/z 523 (AAx–2H2O–4CH3+4) were also detected in plasma and liver by LC-MS (APCI). Although biological functions of FUCO metabolites need thorough investigation, this is the first detailed report on FUCO metabolites in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Wang WJ, Wang GC, Zhang M, Tseng CK (2005) Isolation of Fucoxanthin from the Rhizoid of Laminaria japonica Aresch. J Integr Plant Biol 47:1009–1015

    Article  CAS  Google Scholar 

  2. Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, Miyashita K (2007) Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J Agric Food Chem 55:8516–8522

    Article  CAS  PubMed  Google Scholar 

  3. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K (2005) Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun 332:392–397

    Article  CAS  PubMed  Google Scholar 

  4. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131:3303–3306

    CAS  PubMed  Google Scholar 

  5. Asai A, Sugawara T, Ono H, Nagao A (2004) Biotransformation of fucoxanthinol into amarouciaxanthin a in mice and Hepg2 cells: formation and cytotoxicity of fucoxanthin metabolites. Drug Metab Dispos 32:205–211

    Article  CAS  PubMed  Google Scholar 

  6. Sugawara T, Baskaran V, Tsuzuki W, Nagao A (2002) Brown algae fucoxanthin is hydrolyzed to fucoxanthinol during absorption by caco-2 human intestinal cells and mice. J Nutr 132:946–951

    CAS  PubMed  Google Scholar 

  7. Shiratori K, Ohgami K, Llieva I, Jin XH, Koyama Y, Miyashita K, Kase S, Ohno S (2005) Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp Eye Res 81:422–428

    Article  CAS  PubMed  Google Scholar 

  8. Sangeetha RK, Bhaskar N, Baskaran V (2008) Fucoxanthin restrains oxidative stress induced by retinol deficiency in rats through modulation of Na+Ka+-ATPase and antioxidant enzyme activities in rats. Eur J Nutr 47:432–441

    Article  Google Scholar 

  9. Sangeetha RK, Bhaskar N, Baskaran V (2009) Comparative effects of ß-carotene and fucoxanthin on retinol deficiency induced oxidative stress. Mol Cell Biochem. doi:10.1007/s11010-009-0145-y (in press)

  10. Oliveros L, Vega V, Anzulovich AC, Ramirez D, Giminez MS (2000) Vitamin A deficiency modifies antioxidant defences and essential element contents in rat heart. Nutr Res 20:1139–1150

    Article  CAS  Google Scholar 

  11. Raju M, Lakshminarayana R, Krishnakantha TP, Baskaran V (2006) Micellar oleic and eicosapentaenoic acid but not linoleic acid influences the β-carotene uptake and its cleavage into retinol in rats. Mol Cell Biochem 288:7–15

    Article  CAS  PubMed  Google Scholar 

  12. Nagao A (2004) Oxidative conversion of carotenoids to retinoids and other products. J Nutr 134:237S–240S

    CAS  PubMed  Google Scholar 

  13. Burri BJ, Clifford AJ (2004) Carotenoid and retinoid metabolism: insights from isotope studies. Arch Biochem Biophys 430:110–119

    Article  CAS  PubMed  Google Scholar 

  14. Ganguly J, Sastry PSM (1985) Mechanism of conversion of β-carotene into vitamin-A central cleavage versus random cleavage. World Rev Nutr Diet 45:198–220

    CAS  Google Scholar 

  15. Lakshminarayana R, Aruna G, Sangeetha RK, Bhaskar N, Divakar S, Baskaran V (2008) Possible degradation/biotransformation of lutein in vitro and in vivo: isolation and structural elucidation of lutein metabolites by HPLC and LC-MS (APCI). Free Radic Biol Med 45:982–993

    Article  CAS  PubMed  Google Scholar 

  16. Khachik F, deMoura FF, Zbao DU, Aebiscber CP, Bernstein PS (2002) Transformation of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models. Invest Ophthalmol Vis Sci 43:3383–3392

    PubMed  Google Scholar 

  17. Gajic M, Zaripheh S, Sun F, Erdman JW Jr (2006) Apo-8′-lycopenal and apo-8′-lycopenal are metabolic products of lycopene in rat liver. J Nutr 136:1552–1557

    CAS  PubMed  Google Scholar 

  18. Moren M, Naess T, Hamre K (2002) Conversion of β-carotene, canxanthin and astaxanthin to vitamin A in Atlantic halibut (Hippoglossus hippoglossus) juveniles. Fish Physiol Biochem 27:71–80

    Article  CAS  Google Scholar 

  19. Matsuno T (1991) Xanthophylls as precursors of retinoids. Pure Appl Chem 63:81–88

    Article  CAS  Google Scholar 

  20. Goswami UC, Barua AB (1981) Intestinal conversion of lutein into 3-dehydroretinol in freshwater fish, Heteropneustes fossilis & Channa straitus. Ind J Biochem Biophys 18:88

    CAS  Google Scholar 

  21. American Institute of Nutrition (1977) Report of the American Institute of Nutrition Ad Hoc committee on standards for nutritional studies. J Nutr 170:1340–1348

    Google Scholar 

  22. Haugan JA, Akermann T, Jensen LS (1992) Isolation of fucoxanthin and peridinin. In: Packer L (ed) Carotenoids part A: chemistry, separation, quantitation and antioxidants. Methods in enzymology, vol 213. Academic Press Inc., Orlando, pp 231–245

    Chapter  Google Scholar 

  23. Statsoft (1999) Statistics for Windows, Ver. 5.0. TULSA, Statsoft Inc, USA

  24. Kaul S, Krishnakantha TP (1997) Influence of retinol deficiency and curcumin/turmeric feeding on tissue microsomal membrane lipid peroxidation and fatty acids in rats. Mol Cell Biochem 175:43–48

    Article  CAS  PubMed  Google Scholar 

  25. Bhosale P, Zhao da D, Serban B, Bernstein PS (2007) Identification of 3-methoxyzeaxanthin as a novel age-related carotenoid metabolite in the human macula. Invest Ophthalmol Vis Sci 48:1435–1440

    Article  PubMed  Google Scholar 

  26. Strand A, Herstad O, Jensen SL (1998) Fucoxanthin metabolites in egg yolks of laying hens. Comp Biochem Physiol 119:963–974

    Article  CAS  Google Scholar 

  27. Olson JA (1994) Absorption, transport and metabolism of carotenoids in humans. Pure Appl Chem 6:1011–1016

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Department of Biotechnology, Govt. of India, New Delhi. The first author acknowledges the University Grant Commission, Govt. of India, New Delhi, for awarding Senior Research Fellowship. Authors acknowledge the help of Ms. Asha M and Mr. Mukund PL in chromatographic and mass spectrometric analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vallikannan Baskaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sangeetha, R.K., Bhaskar, N., Divakar, S. et al. Bioavailability and metabolism of fucoxanthin in rats: structural characterization of metabolites by LC-MS (APCI). Mol Cell Biochem 333, 299–310 (2010). https://doi.org/10.1007/s11010-009-0231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0231-1

Keywords

Navigation