Skip to main content

Advertisement

Log in

Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is considered as a disease of dysfunction of the stem cells. Studies on stem cells have demonstrated that Oct4 plays a pivotal role in embryo regulation. In order to understand the role of Oct4 in HCC and the relationship among Oct4 and wnt/β-catenin and TGF-β signal pathways, we have detected the expression of Oct4, Nanog, Sox2, STAT3 as well as the genes in wnt/β-catenin, and TGF-β families in HCC cell lines and in tumor specimens from HCC patients. The authors found that Oct4 was expressed in all of the four HCC cell lines and the tumor specimens from HCC patients. Some other genes were also expressed in them with different level including Nanog, Sox2, STAT3 and TCF3, wnt10b, β-catenin, ELF, Smad3 and Smad4. The ability of the clone formation and migration of the HepG2 decreased after Oct4 was knockdowned. Silencing of Oct4 and TCF3 in HCC cell line HepG2 revealed that there were complicated relationships among Oct4, wnt/β-catenin family and TGF-β family genes. Knockdowning Oct4 reduced the expression of TGF-β family genes ELF, Smad3, Smad4 and wnt/β-catenin family genes, wnt10b, and β-catenin but increased TCF3. In reverse, knockdowning TCF3 led to the increased expression of Oct4 and TGF-β family genes. In conclusion, the expression of Oct4 in HCC may play an important role as in stem cell. Because Oct4 improves not only the function of wnt/β-catenin, but also the TGF-β signal pathways, the significance of its expression in HCC might be more complicated than we evinced before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Thomas MB, Zhu AX (2005) Hepatocellular carcinoma: the need for progress. J clinic Oncol 23:2892–2899

    Article  Google Scholar 

  2. Yuan FJ, Zhou WB, Zhang JF, Zhang ZY, Zou C, Huang L, Zhang YS, Dai ZQ (2008) Anti-cancer drugs are synergistic with freezing in induction of apoptosis in HCC cells. Cryobiology 57:60–65

    Article  CAS  PubMed  Google Scholar 

  3. Chiba T, Kita K, Zheng YW, Yokosuka O, Saisho H, Iwama A, Nakauchi H, Taniguchi H (2006) Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties. Hepatology 44:240–251

    Article  CAS  PubMed  Google Scholar 

  4. Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115

    Article  CAS  PubMed  Google Scholar 

  5. Freberg CT, Dahl JA, Timoskainen S, Collas P (2007) Epigenetic reprogramming of oct4 and nanog regulatory regions by embryonal carcinoma cell extract. Mol Biol Cell 18:1543–1553

    Article  CAS  PubMed  Google Scholar 

  6. Babaie Y, Herwig R, Greber B, Brink TC, Wruck W, Groth D, Lehrach H, Burdon T, Adjaye J (2007) Analysis of oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cell 25:500–510

    Article  CAS  Google Scholar 

  7. Hay DC, Sutherland L, Clark J, Burdon T (2004) Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cell 22:225–235

    Article  CAS  Google Scholar 

  8. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  CAS  PubMed  Google Scholar 

  9. Ezeh UI, Turek PJ, Reijo RA, Clark AT (2005) Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104:2255–2265

    Article  CAS  PubMed  Google Scholar 

  10. Gu G, Yuan J, Wills M, Kasper S (2007) Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Res 67:4807–4815

    Article  CAS  PubMed  Google Scholar 

  11. Chen YC, Hsu HS, Chen YW, Tsai TH, How CK, Wang CY, Hung SC, Chang YL, Tsai ML, Lee YY, Ku HH, Chiou SH (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived cd133-positive cells. PLoS ONE 3:1–14

    Google Scholar 

  12. Wang J, Wynshaw-Boris A (2004) The canonical Wnt pathway in early mammalian embryogenesis and stem cell maintenance/differentiation. Curr Opin Genet Dev 14:533–539

    Article  CAS  PubMed  Google Scholar 

  13. Thompson MD, Monga SP (2007) WNT/β-catenin signaling in liver health and disease. Hepatology 45:1298–1305

    Article  CAS  PubMed  Google Scholar 

  14. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  PubMed  Google Scholar 

  15. Glasgow E, Mishra L (2008) Transforming growth factor-b signaling and ubiquitinators in cancer. Endocr Relat Cancer 15:59–72

    Article  CAS  PubMed  Google Scholar 

  16. Amin R, Mishra L (2008) Liver stem cells and TGF-β in hepatic carcinogenesis. Gastrointest Cancer Res 2(4 Suppl):S27–S30

    PubMed  Google Scholar 

  17. Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, Shetty K, Johnson L, Reddy EP (2009) Liver stem cells and hepatocellular carcinoma. Hepatology 49:318–329

    Article  PubMed  Google Scholar 

  18. Ouyang L, Shen LY, Li T, Liu J (2006) Inhibition effedt of Oncostatin M on metastatic homan lumg cancer cells 95-D in vitro and on mutine melanoma cells B16BL6 in vitro. Biomed Res 27:197–202

    Article  CAS  PubMed  Google Scholar 

  19. Hamill KJ, Langbein L, Jones JR, McLean W (2009) Identification of a novel family of laminin N-terminal alternate splice isoforms: structural and functional characterization. JBC 284:35588–35596

    Article  CAS  Google Scholar 

  20. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi K, Tanabe K, Ohnuki M (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  22. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K, Bernstein BE, Jaenisch R (2007) In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448:318–324

    Article  CAS  PubMed  Google Scholar 

  23. Lensch MW, West JA (2008) Looking into the future of cell-based therapy. South Med J 101:79–82

    PubMed  Google Scholar 

  24. Gil J, Stembalska A, Pesz KA, Sasiadek MM (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J App Genet 49:193–199

    Google Scholar 

  25. Chang CC, Shieh GS, Wu P, Lin CC, Shiau AL, Wu CL (2008) Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 68:6281–6291

    Article  CAS  PubMed  Google Scholar 

  26. Tang Y, Kitisin K, Jogunoori W, Mueller SC, Ressom HW, Rashid A, He AR, Mendelson JS, Jessup JM, Shetty K, Zasloff M, Mishra B, Reddy EP, Johnson L, Mishra L (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci USA 105:2445–2450

    Article  CAS  PubMed  Google Scholar 

  27. Palma I, Pen RY, Contreras A, Ceballos-Reyes G, Coyote N, Eran L, Kofman-Alfaro S, Queipo G (2008) Participation of OCT3/4 and b-catenin during dysgenetic gonadal malignant transformation. Cancer Lett 263:204–211

    Article  CAS  PubMed  Google Scholar 

  28. Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22:746–755

    Article  CAS  PubMed  Google Scholar 

  29. Tam WL, Lim CY, Han JY, Zhang JQ, Ang YS, Ng HH, Yang H, Lim B (2008) T-Cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26:2019–2031

    Article  CAS  PubMed  Google Scholar 

  30. Yi F, Pereira L, Merrill BJ (2008) Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cell 26:1951–1960

    Article  CAS  Google Scholar 

  31. Hahn WC, Polyak K (2005) Roots and stems: stem cells in cancer. Nat Med 11:296–300

    Google Scholar 

  32. Millet C, Zhang YE (2007) Roles of smad3 in TGF-β signaling during carcinogenesis. Crit Rev Eukaryot Gene Expr 17:281–293

    CAS  PubMed  Google Scholar 

  33. Shackel NA, McCaughan GW, Warner FJ (2008) Hepatocellular carcinoma development requires hepatic stem cells with altered transforming growth factor and interleukin-6 signaling. Hepatology 47:2134–2136

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by The Special Fund for The promotion of Science, Hubei Provincial Department of Education and Bureau of Science, Shiyan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YouShun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, F., Zhou, W., Zou, C. et al. Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways. Mol Cell Biochem 343, 155–162 (2010). https://doi.org/10.1007/s11010-010-0509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0509-3

Keywords

Navigation