Skip to main content
Log in

Obesogenic high fat western diet induces oxidative stress and apoptosis in rat heart

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Feeding Wistar rats a high calorie “Western” diet (45% fat) for up to 48 weeks induces obesity and cardiac dysfunction, while a high fat diet (60% fat) induces obesity only. Here we investigated the molecular “footprints” of the two forms of diet-induced obesity in the heart. In rats fed Western diet for a long term, cardiac mRNA transcript levels of malic enzyme were decreased (−72%, P < 0.05), suggesting impaired anaplerotic flux of the Krebs cycle (KC) and mitochondrial dysfunction. In addition, there was a marked decrease in the expression of the transcription factor MEF2C (myocyte enhancer factor 2C) and its target gene SERCA2a (sarco-endo-plasmic reticulum Ca2+-ATPase). Oxidative stress was reflected in reduced transcript levels of manganese superoxide dismutase, glutathione peroxidase 1, and increased protein levels of mitochondrial transcription factor A, suggesting compensatory mitochondrial biogenesis in the face of increased mitochondrial damage. Oxidant injury was accompanied by increased protein glycosylation, increased transcript levels of glutamine fructose 6-phosphate amidotransferase 2, and decreased protein levels of acetyl Co-A carboxylase. Lastly, apoptosis was evident by TUNEL positivity and elevated mRNA transcript levels and activity of caspase 3. Consistent with these results, protein levels of Bcl2 were markedly reduced. We conclude that inadequate supplementation of KC intermediates due to reduced levels of malic enzyme, downregulation of MEF2C and its target gene SERCA2a, oxidative stress, and programmed cell death are all potential contributors to contractile dysfunction of the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

αKGDH:

a-Ketoglutarate dehydrogenase

AMPK:

5′ AMP-activated protein kinase

ANOVA:

Analyses of variance

AT:

Acute term (1–7 days)

CPT:

Carnitine palmitoyl transferase

CTE:

Cytosolic thioesterase

GFAT:

Glutamine fructose 6-phosphate amidotransferase

GLUT:

Glucose transporter

GPAT:

Glycerol 3-phosphate acyltransferase

GPX1:

Glutathione peroxidase 1

HBSP:

Hexosamine biosynthetic pathway

HO-1:

Heme oxygenase 1

IT:

Intermediate term (16–24 weeks)

KC:

Krebs cycle

LT:

Long term (32–48 weeks)

ME:

Malic enzyme

MERF2c:

Myocyte enhancer factor 2c

MnSOD:

Manganese superoxide dismutase

MTE:

Mitochondrial thioesterase

mtTFA/TFAM:

Mitochondrial transcription factor A

NAD (H):

Nicotinamide adenine dinucleotide (reduced)

OXPAT:

Lipid droplet proteins of the PAT (perilipin, adipophilin, and TIP47) family in highly oxidative tissues

PC:

Pyruvate carboxylase

PCC:

Propionyl-CoA carboxylase

PARP:

Poly (ADP-ribose) polymerase

PPAR:

Peroxisome proliferator-activated receptor

ROS:

Reactive oxygen species

SERCA:

Sarco-endoplasmatic reticulum calcium ATPase

ST:

Short term (4–8 weeks)

TG:

Triglycerides

UCP:

Uncoupling protein

References

  1. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG, Kannel WB, Vasan R (2002) Obesity and the risk of heart failure. N Engl J Med 347:305–313

    Article  PubMed  Google Scholar 

  2. Wilson CR, Tran MK, Salazar KL, Young ME, Taegtmeyer H (2007) Western diet, but not high fat diet, causes derangements of fatty acid metabolism and contractile dysfunction in the heart of Wistar rats. Biochem J 406:457–467

    Article  CAS  PubMed  Google Scholar 

  3. Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    Article  CAS  PubMed  Google Scholar 

  4. Russell RR, Taegtmeyer H (1991) Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Physiol 261:H1756–H1762

    CAS  PubMed  Google Scholar 

  5. Gibala MJ, Young ME, Taegtmeyer H (2000) Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle. Acta Physiol Scand 168:657–665

    Article  CAS  PubMed  Google Scholar 

  6. Sorokina N, O’Donnell JM, McKinney RD, Pound KM, Woldegiorgis G, LaNoue KF, Ballal K, Taegtmeyer H, Buttrick PM, Lewandowski ED (2007) Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115:2033–2041

    Article  CAS  PubMed  Google Scholar 

  7. Harmancey R, Wilson CR, Wright NR, Taegtmeyer H (2010) Western diet changes cardiac acyl-CoA composition in obese rats: a potential role for hepatic lipogenesis. J Lipid Res 51:1380–1393

    Article  CAS  PubMed  Google Scholar 

  8. Young ME, Yan Z, Razeghi P, Cooksey RC, Guthrie PH, Stepkowski SM, McClain DA, Tian R, Taegtmeyer H (2007) Proposed regulation of gene expression by glucose in rodent heart. Gene Reg Syst Biol 1:251–262

    Google Scholar 

  9. Zhang D, Liu ZX, Choi CS, Tian L, Kibbey R, Dong J, Cline GW, Wood PA, Shulman GI (2007) Mitochondrial dysfunction due to long-chain Acyl-CoA dehydrogenase deficiency causes hepatic steatosis and hepatic insulin resistance. Proc Natl Acad Sci USA 104:17075–17080

    Article  CAS  PubMed  Google Scholar 

  10. Taegtmeyer H, Hems R, Krebs HA (1980) Utilization of energy-providing substrates in the isolated working rat heart. Biochem J 186:701–711

    CAS  PubMed  Google Scholar 

  11. Huang HM, Zhang H, Xu H, Gibson GE (2003) Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation. Biochim Biophys Acta 1637:119–126

    CAS  PubMed  Google Scholar 

  12. Tretter L, Adam-Vizi V (2005) Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 360:2335–2345

    Article  CAS  PubMed  Google Scholar 

  13. Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H (2002) Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C-regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106:407–411

    Article  CAS  PubMed  Google Scholar 

  14. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM (2008) Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther 15:1550–1557

    Article  CAS  PubMed  Google Scholar 

  15. Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH (2002) Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51:1166–1171

    Article  CAS  PubMed  Google Scholar 

  16. Gulick T, Cresci S, Caira T, Moore D, Kelly D (1994) The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 91:11012–11016

    Article  CAS  PubMed  Google Scholar 

  17. Nagao M, Parimoo B, Tanaka K (1993) Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat. J Biol Chem 268:24114–24124

    CAS  PubMed  Google Scholar 

  18. Bonen A, Campbell SE, Benton CR, Chabowski A, Coort SL, Han XX, Koonen DP, Glatz JF, Luiken JJ (2004) Regulation of fatty acid transport by fatty acid translocase/CD36. Proc Nutr Soc 63:245–249

    Article  CAS  PubMed  Google Scholar 

  19. Wolins NE, Quaynor BK, Skinner JR, Tzekov A, Croce MA, Gropler MC, Varma V, Yao-Borengasser A, Rasouli N, Kern PA, Finck BN, Bickel PE (2006) OXPAT/PAT-1 is a PPAR-induced lipid droplet protein that promotes fatty acid utilization. Diabetes 55:3418–3428

    Article  CAS  PubMed  Google Scholar 

  20. Ruderman N, Prentki M (2004) AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 3:340–351

    Article  CAS  PubMed  Google Scholar 

  21. McGarry JD (2002) Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 51:7–18

    Article  CAS  PubMed  Google Scholar 

  22. Cao J, Li JL, Li D, Tobin JF, Gimeno RE (2006) Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis. Proc Natl Acad Sci USA 103:19695–19700

    Article  CAS  PubMed  Google Scholar 

  23. Nagle CA, An J, Shiota M, Torres TP, Cline GW, Liu ZX, Wang S, Catlin RL, Shulman GI, Newgard CB, Coleman RA (2007) Hepatic overexpression of glycerol-sn-3-phosphate acyltransferase 1 in rats causes insulin resistance. J Biol Chem 282:14807–14815

    Article  CAS  PubMed  Google Scholar 

  24. Fulop N, Marchase RB, Chatham JC (2007) Role of protein O-linked N-acetyl-glucosamine in mediating cell function and survival in the cardiovascular system. Cardiovasc Res 73:288–297

    Article  PubMed  Google Scholar 

  25. Kajstura J, Mansukhani M, Cheng W, Reiss K, Krajewski S, Reed JC, Quaini F, Sonnenblick EH, Anversa P (1995) Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res 219:110–121

    Article  CAS  PubMed  Google Scholar 

  26. Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H (1996) Expression of bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94:1506–1512

    CAS  PubMed  Google Scholar 

  27. Kirshenbaum L, de Moissac D (1997) The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation 96:1580–1585

    CAS  PubMed  Google Scholar 

  28. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  CAS  PubMed  Google Scholar 

  29. Shen X, Zheng S, Thongboonkerd V, Xu M, Pierce WM Jr, Klein JB, Epstein PN (2004) Cardiac mitochondrial damage and biogenesis in a chronic model of type 1 diabetes. Am J Physiol Endocrinol Metab 287:E896–E905

    Article  CAS  PubMed  Google Scholar 

  30. Cooney GJ, Taegtmeyer H, Newsholme EA (1981) Tricarboxylic acid cycle flux and enzyme activities in the isolated working rat heart. Biochem J 200:701–703

    CAS  PubMed  Google Scholar 

  31. Slawik M, Vidal-Puig AJ (2006) Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev 5:144–164

    Article  CAS  PubMed  Google Scholar 

  32. Barger PM, Kelly DP (2000) PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10:238–245

    Article  CAS  PubMed  Google Scholar 

  33. Cooksey RC, McClain DA (2002) Transgenic mice overexpressing the rate-limiting enzyme for hexosamine synthesis in skeletal muscle or adipose tissue exhibit total body insulin resistance. Ann NY Acad Sci 967:102–111

    Article  CAS  PubMed  Google Scholar 

  34. Clark RJ, McDonough PM, Swanson E, Trost SU, Suzuki M, Fukuda M, Dillmann WH (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237

    Article  CAS  PubMed  Google Scholar 

  35. Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS (2001) Depressed levels of Ca2+-cycling proteins may underlie sarcoplasmic reticulum dysfunction in the diabetic heart. Diabetes 50:2133–2138

    Article  CAS  PubMed  Google Scholar 

  36. Leichman JG, Wilson EB, Scarborough T, Aguilar D, Miller CC III, Yu S, Algahim MF, Reyes M, Moody FG, Taegtmeyer H (2008) Dramatic reversal of derangements in muscle metabolism and diastolic left ventricular function after bariatric surgery. Am J Med 121:966–973

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a National Heart, Lung and Blood Institute grant (RO1HL73162). We thank Mei Gong for technical assistance, Tommy Reese for TUNEL staining, and Roxy A. Tate and Rebecca Salazar for help with the preparation of the manuscript.

Disclosures

There are no financial conflicts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Taegtmeyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 435 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballal, K., Wilson, C.R., Harmancey, R. et al. Obesogenic high fat western diet induces oxidative stress and apoptosis in rat heart. Mol Cell Biochem 344, 221–230 (2010). https://doi.org/10.1007/s11010-010-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-010-0546-y

Keywords

Navigation