Skip to main content
Log in

Mitochondrial dysfunction as a mediator of hippocampal apoptosis in a model of hepatic encephalopathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

In this study, we describe the presence of apoptosis, associated with a mitochondrial dysfunction in the hippocampus of animals in an experimental model defined as minimal hepatic encephalopathy (MHE). This experimental model was studied after 10 days of induced portal vein calibrated stricture, leading to portal hypertension and to a moderate hyperammonemia, without the presence of other evident central nervous system changes. The molecular mechanisms here proposed indicate the presence of apoptotic intrinsic pathways that point to hippocampal mitochondria as an important mediator of apoptosis in this experimental model. In this model of MHE, the presence of DNA fragmentation is documented by 2.3-times increased number of TUNEL-positive cells. These findings together with a higher ratio of the Bcl-2 family members Bax/Bcl-xL in the outer mitochondrial membrane of the MHE animals together with 11% of cytochrome c release indicate the presence of apoptosis in this experimental model. A detailed analysis of the hippocampal mitochondrial physiology was performed after mitochondrial isolation. The determination of the respiratory rate in the presence of malate plus glutamate and ADP showed a 45% decrease in respiratory control in MHE animals as compared with the sham group. A marked decrease of cytochrome oxidase (complex IV of the electron transport chain) was also observed, showing 46% less activity in hippocampal mitochondria from MHE animals. In addition, mitochondria from these animals showed less ability to maintain membrane potential (ΔΨ m) which was 13% lower than the sham group. Light scattering experiments showed that mitochondria from MHE animals were more sensitive to swell in the presence of increased calcium concentrations as compared with the sham group. In addition, in vitro studies performed in mitochondria from sham animals showed that mitochondrial permeability transition (MPT) could be a mitochondrial mediator of the apoptotic signaling in the presence of NH4 + and calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

Ca2+ :

Calcium

CsA:

Cyclosporine A

DiOC6:

3,3′dihexyloxocarbocyanine iodide

FCCP:

Carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone

FL-1:

Green fluorescence

HE:

Hepatic encephalopathy

H2O2 :

Hydrogen peroxide

MHE:

Minimal hepatic encephalopathy

MSH:

Mannitol–sacarose–Hepes

MPT:

Mitochondrial permeability transition

NH4 + :

Ammonia

PVS:

Portal vein stricture

RCR:

Respiratory control rate

References

  1. Vorobioff J, Bredfelt JE, Groszmann RJ (1983) Hyperdynamic circulation in portal hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol 244:G52–G57

    CAS  PubMed  Google Scholar 

  2. Perazzo JC, Lores Arnaiz S, Fernández M, Lago N, Lemberg A (2006) Prehepatic portal hypertension and mitochondrial dysfunction in brain hippocampus. In: Häussinger D, Schliess H (eds) Hepatic encephalopathy and nitrogen metabolism, vol 14. Springer, Dordrecht, pp 191–201

    Google Scholar 

  3. Lores Arnaiz S, Perazzo JC, Prestifilipo JC, Lago N, Dámico G, Czerniczyniec A, Bustamante J, Boveris A, Lemberg A (2005) Hippocampal mitochondrial dysfunction with decreased mtNOS activity in prehepatic portal hypertensive rats. Neurochem Int 47:362–368

    Article  CAS  PubMed  Google Scholar 

  4. Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–853

    Article  CAS  PubMed  Google Scholar 

  5. Butterworth RF (2003) Pathogenesis of hepatic encephalopathy: new insights from neuroimaging and molecular studies. J Hepatol 39:278–285

    Article  PubMed  Google Scholar 

  6. Felipo V, Butterworth RF (2002) Neurobiology of ammonia. Prog Neurobiol 67:259–279

    Article  CAS  PubMed  Google Scholar 

  7. Kosenko E, Kaminsky Y, Lobata O, Muravyov N, Kaminsky A, Hermenegildo D, Felipo V (1998) Nitroarginine an inhibitor of nitric oxide synthase, prevents changes in superoxide radical and antioxidant enzymes induced by ammonemia intoxication. Metab Brain Dis 13:29–41

    Article  CAS  PubMed  Google Scholar 

  8. Kroemer G, Zamzami N, Susin SA (1997) Mitochondrial control of apoptosis. Immunol Today 18:44–51

    Article  CAS  PubMed  Google Scholar 

  9. Gogvadze V, Robertson JD, Zhivotovsky B, Orrenius S (2001) Cytochrome c release occurs via Ca2+ dependent and Ca2+ independent mechanisms that are regulated by Bax. Proc Natl Acad Sci USA 99(3):1259–1263

    Google Scholar 

  10. Bernardi P, Scorrano L, Colonia R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264:687–701

    Article  CAS  PubMed  Google Scholar 

  11. Butterworth R, Noremberg M, Felipo V, Ferenci P, Albrecht J, Blei A (2009) Experimental models of hepatic encephalopathy: ISHEN guidelines. Liver Int 1478:783–788

    Article  Google Scholar 

  12. Navarro A, López-Cerero JM, Sandez MJ, Sánchez-Pino MJ, Gomes C, Cadenas E, Boberis A (2008) Hippocampal mitochondrial dysfunction in rat aging. Am J Physiol Regul Integr Comp Physiol 294(2):R501–R509

    Article  CAS  PubMed  Google Scholar 

  13. Wijsman JH, Jonker RR, Keijzer R, Van De Velde CJH, Cornelisse CJ, Van Dierendock JH (1993) A new method to detect apoptosis in paraffin sections. In situ end-labeling of fragmented DNA. J Histochem Cytochem 41:7–12

    Article  CAS  PubMed  Google Scholar 

  14. Estabrook RW (1967) Mitochondrial respiratory control and the polarographic measurement of ADP:O ratios. Methods Enzymol 10:41–47

    Article  CAS  Google Scholar 

  15. Chance B, Williams GR (1956) The respiratory chain and oxidative phosphorylation. Adv Enzymol 17:65–134

    CAS  Google Scholar 

  16. Yonetani T (1967) Cytochrome oxidase: beef heart. Methods Enzymol 10:332–335

    Article  CAS  Google Scholar 

  17. Bustamante J, Czerniczyniec A, Cymering C, Lores Arnaiz S (2008) Age related changes from youth to adulthood in rat brain cortex: nitric oxide synthase and mitochondrial respiratory function. Neurochem Res 33(7):1216–1223

    Article  CAS  PubMed  Google Scholar 

  18. Mattiasson G, Friberg H, Hansson M, Elmér E, Wieloch T (2003) Flow cytometric analysis of mitochondria from CA1 and CA3 regions of rat hippocampus reveals differences in permeability transition pore activation. J Neurochem 87:532–544

    Article  CAS  PubMed  Google Scholar 

  19. Czerniczyniec A, Bustamante J, Lores Arnaiz S (2006) Modulation of brain mitochondrial function by deprenyl. Neurochem Int 48:235–241

    Article  CAS  PubMed  Google Scholar 

  20. Bustamante J, Caldas Lopez E, Garcia M, Di Libero E, Alvarez E, Hajos S (2004) Disruption of mitochondrial membrane potential during apoptosis induced by PSC 833 and CsA in multidrug-resistant lymphoid leukemia. TAAP 199:44–51

    CAS  Google Scholar 

  21. Cafiso DS (1994) Alamethicin a peptide model for voltage gaiting and protein-membrane interactions. Ann Rev Biophys Biomol Struct 23:141–165

    Article  CAS  Google Scholar 

  22. Hansson MJ, Persson T, Friberg H, Keep MF, Rees A, Wieloch T, Elmér E (2003) Powerful cyclosporine inhibition of calcium-induced permeability transition in brain mitochondria. Brain Res 960:99–111

    Article  CAS  PubMed  Google Scholar 

  23. Scorticati C, Prestifilipo JP, Murer G, Lemberg A, Perazzo JC (2001) Cambios funcionales en el sistema nervioso central de ratas hipertensas portales prehepáticas. Medicina 61:673–675

    CAS  PubMed  Google Scholar 

  24. Tsujimoto Y (1997) Apoptosis and necrosis: intracellular ATP levels as a determinant for cell death modes. Cell Death Differ 4:429–434

    Article  CAS  PubMed  Google Scholar 

  25. Rostovtseva T, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM (2004) Bid, but not Bax, regulates VDAC channels. J Biol Chem 279:13575–13583

    Article  CAS  PubMed  Google Scholar 

  26. Bustamante J, Nutt L, Orrenius S, Gogvadze V (2005) Arsenic stimulates release of cytochrome c from isolated mitochondria via induction of mitochondrial permeability transition. TAAP 207(Suppl 2):110–116

    Google Scholar 

  27. Woong S, Winseck A, Vinsant S, Park O, Kim H, Oppenheim RW (2004) Programmed cell death of adult-generated hippocampal neurons is mediated by the proapoptotic gene Bax. J Neurosci 24:11205–11213

    Article  Google Scholar 

  28. Deckwerth TL, Elliot JL, Knudson CM, Johnson EM Jr, Snider WD, Korsmeyer SJ (1996) Bax is required for neuronal death after trophic factor deprivation and during development. Neuron 17:401–411

    Article  CAS  PubMed  Google Scholar 

  29. Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera PL (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    Article  CAS  PubMed  Google Scholar 

  30. Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67

    Article  CAS  PubMed  Google Scholar 

  31. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  CAS  PubMed  Google Scholar 

  32. Norenberg MDJ, Jayakumar AR, Rama Rao KV, Panikar KS (2007) New concept in the mechanism of ammonia-induced astrocyte swelling. Metab Brain Dis 22:219–234

    Article  CAS  PubMed  Google Scholar 

  33. Zoratti M, Szabo I (1994) Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomembr 26:543–553

    Article  CAS  PubMed  Google Scholar 

  34. Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  35. Ziemiska E, Dolinska M, Lazarewicz JW, Albrecht J (2000) Induction of permeability transition and swelling of rat brain mitochondria by glutamine. Neurotoxicology 21(3):295–300

    Google Scholar 

  36. Lay JCK, Cooper AJL (1986) Brain α-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution and effects of inhibitors. J Neurochem 47:1376–1386

    Article  Google Scholar 

  37. Kosenko E, Kaminsky Y, Grau E, Miñana MD, Marcaida G, Grisolia S, Felipo V (1994) Brain ATP depletion induced by acute ammonia intoxication in rats is mediated by activation of the NMDA receptor and Na+, K+-ATPase. J Neurochem 63:2172–2178

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors acknowledge to the University of Buenos Aires, the National Scientific Council (Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET) and to the Promotion National Agency of Science and Technology (ANPCyT) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bustamante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bustamante, J., Lores-Arnaiz, S., Tallis, S. et al. Mitochondrial dysfunction as a mediator of hippocampal apoptosis in a model of hepatic encephalopathy. Mol Cell Biochem 354, 231–240 (2011). https://doi.org/10.1007/s11010-011-0822-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0822-5

Keywords

Navigation