Skip to main content

Advertisement

Log in

Knockdown of LdMC1 and Hsp70 by antisense oligonucleotides causes cell-cycle defects and programmed cell death in Leishmania donovani

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD) has important implications in the biology of unicellular parasites, especially in devising control strategies against them. In this study, we examined the role of metacaspase LdMC1 and heat shock protein Hsp70 in Leishmania donovani through transient gene knockdown using antisense oligonucleotides (ASOs), during MG132-induced PCD. Proteasome inhibitor MG132 was used for inducing PCD in the in vitro culture of Leishmania donovani, which was confirmed by morphological and molecular markers. To assess the role of LdMC1 and Hsp70, ASOs with partially modified phosphorothioate backbone were designed against the protein-coding regions of these genes. Promastigotes and axenic ALFs were exposed to ASOs, and gene knockdown was confirmed using RT-PCR. Exposure to MG132 and ASOs led to morphological defects, DNA fragmentation, delay in progressing through the S-phase of cell-cycle and a decrease in the mitochondrial membrane potential. Antisense knockdown of both these genes, individually as well as together, caused phenotypic and molecular characteristics of PCD. Simultaneous knockdown of both LdMC1 and Hsp70 led to a severity in these defects. Parasites co-exposed to MG132 along with ASOs suffered the maximum damage. Together, these data suggest that LdMC1 and Hsp70 have an indispensable role in Leishmania cell-cycle and are, therefore, important for its survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. World Health Organization (2004) TDR Summary Report 2004–05

  2. Ready PD (2010) Leishmaniasis emergence in Europe. Euro Surveill 15:19505

    PubMed  CAS  Google Scholar 

  3. World Health Organization (2002) Weekly epidemiological record. 77:365–370

  4. Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Sachs SE, Sachs JD (2006) Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Med 3:e102

    Article  PubMed  Google Scholar 

  5. Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, Savioli L (2007) Control of neglected tropical diseases. N Engl J Med 357:1018–1027

    Article  PubMed  CAS  Google Scholar 

  6. Beverly SM (2002) Protozomics: trypanosomatid parasite genetics comes of age. Nat Rev Genet 4:11–19

    Article  Google Scholar 

  7. Kedzierski L, Zhu Y, Handman E (2006) Leishmania vaccines: progress and problems. Parasitology 133(Suppl):S87–S112

    Article  PubMed  CAS  Google Scholar 

  8. van Griensven J, Balasegaram M, Meheus F, Alvar J, Lynen L, Boelaert M (2010) Combination therapy for visceral leishmaniasis. Lancet Infect Dis 10:184–194

    Article  PubMed  Google Scholar 

  9. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    Article  PubMed  CAS  Google Scholar 

  10. Chakravarty J, Sundar S (2010) Drug resistance in leishmaniasis. J Glob Infect Dis 2:167–176

    Article  PubMed  Google Scholar 

  11. Ivens AC, Peacock C, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Hertz-Fowler C et al (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    Article  PubMed  Google Scholar 

  12. Bates PA, Rogers ME (2004) New insights into the developmental biology and transmission mechanisms of Leishmania. Curr Mol Med 4:601–609

    Article  PubMed  CAS  Google Scholar 

  13. Bates PA (2007) Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies. Int J Parasitol 37:1097–1106

    Article  PubMed  CAS  Google Scholar 

  14. Raina P, Kaur S (2006) Chronic heat-shock treatment driven differentiation induces apoptosis in Leishmania donovani. Mol Cell Biochem 289:83–90

    Article  PubMed  CAS  Google Scholar 

  15. Shaha C (2006) Apoptosis in Leishmania species & its relevance to disease pathogenesis. Indian J Med Res 123:233–244

    PubMed  CAS  Google Scholar 

  16. Das M, Mukherjee SB, Shaha C (2001) Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes. J Cell Sci 114:2461–2469

    PubMed  CAS  Google Scholar 

  17. Arnoult D, Akarid K, Grodet A, Petit PX, Estaquier J, Amiesen JC (2002) On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilisation. Cell Death Differ 9:65–81

    Article  PubMed  CAS  Google Scholar 

  18. Lee N, Bertholet S, Debrabant A, Muller J, Duncan R, Nakhasi HL (2002) Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ 9:53–64

    Article  PubMed  CAS  Google Scholar 

  19. Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  PubMed  CAS  Google Scholar 

  20. Weinberger M, Ramachandran L, Feng L, Sharma K, Sun X, Marchetti M, Huberman JA, Burhans WC (2005) Apoptosis in budding yeast caused by defects in initiation of DNA replication. J Cell Sci 118:3543–3553

    Article  PubMed  CAS  Google Scholar 

  21. Sen R, Bandyopadhyay S, Dutta A, Mandal G, Ganguly S, Saha P, Chatterjee M (2008) Artemisinin triggers induction of cell-cycle arrest and apoptosis in Leishmania donovani promastigotes. J Med Microbiol 56:1213–1218

    Article  Google Scholar 

  22. Zangger H, Mottram JC, Fasel N (2002) Cell death in Leishmania induced by stress and differentiation: programmed cell death or necrosis? Cell Death Differ 9:1126–1139

    Article  PubMed  CAS  Google Scholar 

  23. Debrabant A, Lee N, Bertholet S, Duncan R, Nakhasi HL (2003) Programmed cell death in trypanosomatids and other unicellular organisms. Int J Parasitol 33:257–267

    Article  PubMed  Google Scholar 

  24. Ouaissi A (2003) Apoptosis-like death in trypanosomatids: search for putative pathways and genes involved. Kinetoplastid Biol Dis 2:5

    Article  PubMed  Google Scholar 

  25. Uren AG, O’Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV, Dixit VM (2000) Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell 6:961–967

    PubMed  CAS  Google Scholar 

  26. Mottram JC, Helms MJ, Coombs GH, Sajid M (2003) Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol 19:182–187

    Article  PubMed  CAS  Google Scholar 

  27. Carmona-Gutierrez D, Fröhlich KU, Kroemer G, Madeo F (2010) Metacaspases are caspases. Doubt no more. Cell Death Differ 17:377–378

    Article  PubMed  CAS  Google Scholar 

  28. Lee RE, Puente LG, Kaern M, Megeney LA (2008) A non-death role of the yeast metacaspase: Yca1p alters cell cycle dynamics. PLoS One 3:e2956

    Article  PubMed  Google Scholar 

  29. Szallies A, Kubata BK, Duszenko M (2002) A metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Sachharomyces cerevisiae. FEBS Lett 517:144–150

    Article  PubMed  CAS  Google Scholar 

  30. Kosec G, Alvarez VE, Agüero F, S′anchez D, Dolinar M, Turk B, Turk V, Cazzulo JJ (2006) Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol Biochem Parasitol 145:18–28

    Article  PubMed  CAS  Google Scholar 

  31. Helms MJ, Ambit A, Appleton P, Tetley L, Coombs GH, Mottram JC (2006) Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J Cell Sci 119:1105–1117

    Article  PubMed  CAS  Google Scholar 

  32. Gonzalez IJ, Desponds C, Schaff C, Mottram JC, Fasel N (2007) Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity. Int J Parasitol 37:161–172

    Article  PubMed  CAS  Google Scholar 

  33. Lee N, Gannavaram S, Selvapandiyan A, Debrabant A (2007) Characterization of metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite Leishmania. Eukar Cell 6:1745–1757

    Article  CAS  Google Scholar 

  34. Ambit A, Fasel N, Coombs GH, Mottram JC (2008) An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 15:113–122

    Article  PubMed  CAS  Google Scholar 

  35. Vercammen D, Declercq W, Vandenabeele P, Breusegem FV (2007) Are metacaspases caspases? J Cell Biol 179:375–380

    Article  PubMed  CAS  Google Scholar 

  36. Young JC, Agashe VR, Siegers K, Hartl FU (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 5:781–791

    Article  PubMed  CAS  Google Scholar 

  37. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    Article  PubMed  CAS  Google Scholar 

  38. Samali A, Orrenius S (1998) Heat shock proteins: regulators of stress response and apoptosis. Cell Stress Chaperones 3:228–236

    Article  PubMed  CAS  Google Scholar 

  39. Sreedhar AS, Csermely P (2004) Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101:227–257

    Article  PubMed  CAS  Google Scholar 

  40. Brandau S, Dresel A, Clos J (1995) High constitutive levels of heat-shock proteins in human-pathogenic parasites of the genus Leishmania. Biochem J 310:225–232

    PubMed  CAS  Google Scholar 

  41. Bente M, Harder S, Wiesgigl M, Heukeshoven J, Gelhaus C, Krause E, Clos J, Bruchhaus I (2003) Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics 3:1811–1829

    Article  PubMed  CAS  Google Scholar 

  42. Paba J, Santana JM, Teixeira ARL, Fontes W, Sousa MV, Ricart CAO (2004) Proteomic analysis of the human pathogen Trypanosoma cruzi. Proteomics 4:1052–1059

    Article  PubMed  CAS  Google Scholar 

  43. Debrabant A, Joshi MB, Pimenta PFP, Dwyer DM (2004) Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. Int J Parasitol 34:205–217

    Article  PubMed  Google Scholar 

  44. Barak E, Amin-Spector S, Gerliak E, Goyard S, Holland N, Zilberstein D (2005) Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Mol Biochem Parasitol 141:99–108

    Article  PubMed  CAS  Google Scholar 

  45. Alcolea PJ, Alonso A, Gómez MJ, Sánchez-Gorostiaga A, Moreno-Paz M, González-Pastor E, Toraño A, Parro V, Larraga V (2010) Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BMC. Genomics 11:31

    Google Scholar 

  46. McQuisten KA, Peek SA (2007) Identification of sequence motifs significantly associated with antisense activity. BMC Bioinformatics 8:184

    Article  PubMed  Google Scholar 

  47. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  48. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    Article  PubMed  CAS  Google Scholar 

  49. Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA Jr, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102:14463–14468

    Article  PubMed  CAS  Google Scholar 

  50. Paugam A, Bulteau AL, Dupoy-Camet J, Creuzet C, Freguet B (2003) Characterization and role of protozoan parasite proteasomes. Trends Parasitol 19:55–59

    Article  PubMed  CAS  Google Scholar 

  51. Silva-Jardim I, Horta MF, Ramalho-Pinto FJ (2004) The Leishmania chagasi proteasome: role in promastigotes growth and amastigotes survival within murine macrophages. Acta Trop 91:121–130

    Article  PubMed  CAS  Google Scholar 

  52. Folgueira C, Carrión J, Moreno J, Saugar JM, Cañavate C, Requena JM (2008) Effects of the disruption of the HSP70-II gene on the growth, morphology, and virulence of Leishmania infantum promastigotes. Int Microbiol 11:81–89

    PubMed  CAS  Google Scholar 

  53. Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV et al (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16:1093–1107

    Article  PubMed  CAS  Google Scholar 

  54. Lebedeva I, Stein CA (2001) Antisense oligonucleotides: promise and reality. Annu Rev Pharmacol Toxicol 41:403–419

    Article  PubMed  CAS  Google Scholar 

  55. Chakraborty R, Dasgupta D, Adhya S, Basu MK (1999) Cationic liposome-encapsulated antisense oligonucleotide mediates efficient killing of intracellular Leishmania. Biochem J 340:393–396

    Article  PubMed  CAS  Google Scholar 

  56. Compagno D, Lampe JN, Bourget C, Kutyavin IV, Yurchenko L, Lukhtanov EA, Gorn VV, Gamper HB Jr, Toulmé JJ (1999) Antisense oligonucleotides containing modified bases inhibit in vitro translation of Leishmania amazonensis mRNAs by invading the mini-exon hairpin. J Biol Chem 274:8191–8198

    Article  PubMed  CAS  Google Scholar 

  57. Mishra M, Porter-Kelley JM, Singh PK, Bennett JR, Chaudhuri G (2001) Enhanced activity of antisense phosphorothioate oligos against Leishmania amastigotes: augmented uptake of oligo, ribonuclease H activation, and efficient target intervention under altered growth conditions. Biochem Pharmacol 62:569–580

    Article  PubMed  CAS  Google Scholar 

  58. Chan JHP, Lim S, Wong WSF (2006) Antisense oligonucleotides: from design to therapeutic application. Clin Exp Pharmacol Physiol 33:533–540

    Article  PubMed  CAS  Google Scholar 

  59. Galderisi U, Di Bernardo G, Melone MA, Galano G, Cascino A, Giordano A, Cipollaro M (1999) Antisense inhibitory effect: a comparison between 3 V-partial and full phosphorothioate antisense oligonucleotides. J Cell Biochem 74:31–37

    Article  PubMed  CAS  Google Scholar 

  60. Boye SM, Pradhan AA, Grant RJ, Clarke PB (2002) Evidence for sequence-dependent and reversible nonspecific effects of PS-capped antisense treatment after intracerebral administration. Antisense Nucleic Acid Drug Dev 12:95–102

    Article  PubMed  CAS  Google Scholar 

  61. Bush KT, Goldberg AL, Nigam SK (1997) Proteasome inhibition leads to a heat-shock response, induction of endoplasmic reticulum chaperones, and thermotolerance. J Biol Chem 272:9086–9092

    Article  PubMed  CAS  Google Scholar 

  62. Kuhn DJ, Zeger EL, Orlowski RZ (2006) Proteasome inhibitors and modulators of heat shock protein function. Update Cancer Therapeutics 1:91–116

    Article  Google Scholar 

  63. Beere HM (2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest 115:2633–2639

    Article  PubMed  CAS  Google Scholar 

  64. Horváth I, Vígh L (2010) Cell biology: Stability in times of stress. Nature 463:436–438

    Article  PubMed  Google Scholar 

  65. Tatischeff I, Petit PX, Grodet A, Tissier JP, Duband-Goulet I, Ameisen JC (2001) Inhibition of multicellular development switches cell death of Dictyostelium discoideum towards mammalian-like unicellular apoptosis. Eur J Cell Biol 80:428–441

    Article  PubMed  CAS  Google Scholar 

  66. Low CP, Shui G, Liew LP, Buttner S, Madeo F, Dawes IW, Wenk MR, Yang H (2008) Caspase-dependent and independent lipotoxic cell-death pathways in fission yeast. J Cell Sci 121:2671–2684

    Article  PubMed  CAS  Google Scholar 

  67. Roy A, Ganguly A, BoseDasgupta S, Das BB, Pal C, Jaisankar P, Majumder HK (2008) Mitochondria-dependent reactive oxygen species-mediated programmed cell death induced by 3,3′-diindolylmethane through inhibition of F0F1-ATP synthase in unicellular protozoan parasite Leishmania donovani. Mol Pharmacol 74:1292–1307

    Article  PubMed  CAS  Google Scholar 

  68. Akopyants NS, Matlib RS, Bukanova EN, Smeds MR, Brownstein BH, Stormo GD, Beverley SM (2004) Expression profiling using random genomic DNA microarrays identifies differentially expressed genes associated with three major developmental stages of the protozoan parasite Leishmania major. Mol Biochem Parasitol 136:71–86

    Article  PubMed  CAS  Google Scholar 

  69. Sarkar A, Sen R, Saha P, Ganguly S, Mandal G, Chatterjee M (2008) An ethanolic extract of leaves of Piper betle (Paan) Linn mediates its antileishmanial activity via apoptosis. Parasitol Res 102:1249–1255

    Article  PubMed  Google Scholar 

  70. Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21:871–877

    Article  PubMed  CAS  Google Scholar 

  71. Don AS, Hogg PJ (2004) Mitochondria as cancer drug targets. Trends Mol Med 10:372–378

    Article  PubMed  CAS  Google Scholar 

  72. Green DR, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8:267–271

    Article  PubMed  CAS  Google Scholar 

  73. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629

    Article  PubMed  CAS  Google Scholar 

  74. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  PubMed  CAS  Google Scholar 

  75. Lee RE, Brunette S, Puente LG, Megeney LA (2010) Metacaspase Yca1 is required for clearance of insoluble protein aggregates. Proc Natl Acad Sci USA 107:13348–13353

    Article  PubMed  CAS  Google Scholar 

  76. Enoksson M, Salvesen GS (2010) Metacaspases are not caspases—always doubt. Cell Death Differ 17:1221

    Article  PubMed  CAS  Google Scholar 

  77. Chowdhury I, Tharakan B, Bhat GK (2008) Caspases—an update. Comp Biochem Physiol B Biochem Mol Biol 151:10–27

    Article  PubMed  Google Scholar 

  78. Bozhkov PV, Smertenko AP, Zhivotovsky B (2010) Aspasing out metacaspases and caspases: proteases of many trades. Sci Signal 3:pe48nbn

    Article  Google Scholar 

  79. Louw CA, Ludewig MH, Mayer J, Blatch GL (2010) The Hsp70 chaperones of the Tritryps are characterized by unusual features and novel members. Parasitol Int 59:497–505

    Article  PubMed  CAS  Google Scholar 

  80. Campos RM, Nascimento M, Ferraz JC, Pereira MM, Rocha PO, Thompson GM, Cysne-Finkelstein L, Figueiredo RC, de Melo Neto OP (2008) Distinct mitochondrial HSP70 homologues conserved in various Leishmania species suggest novel biological functions. Mol Biochem Parasitol 160:157–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

PR was supported by Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR), India. SK is supported in the form of extramural funding by Indian Council of Medical Research (ICMR), India.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sukhbir Kaur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2011_1007_MOESM1_ESM.pdf

ESM 1 Position of designed antisense oligonucleotide on LdMC1 gene. A-On nucleotide sequence, B-on mRNA secondary structure, C-relative location on the mRNA (PDF 503 kb)

11010_2011_1007_MOESM2_ESM.pdf

ESM 2 Position of designed antisense oligonucleotide on Hsp70 gene. A-On Nucleotide sequence, B- On mRNA secondary structure, C-relative location on the mRNA (PDF 543 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raina, P., Kaur, S. Knockdown of LdMC1 and Hsp70 by antisense oligonucleotides causes cell-cycle defects and programmed cell death in Leishmania donovani . Mol Cell Biochem 359, 135–149 (2012). https://doi.org/10.1007/s11010-011-1007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1007-y

Keywords

Navigation