Skip to main content

Advertisement

Log in

Chronic methylphenidate administration alters antioxidant defenses and butyrylcholinesterase activity in blood of juvenile rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Methylphenidate (MPH), a psychostimulant that affects both dopaminergic and noradrenergic systems, is one of the most frequently prescribed treatments for attention-deficit hyperactivity disorder. The present study investigated the effects of chronic administration of MPH on some parameters of oxidative stress, as well as on butyrylcholinesterase (BuChE) activity in blood of young rats. Rats received intraperitoneal injections of MPH (2.0 mg/kg) once a day, from the 15th to the 45th day of age or an equivalent volume of 0.9% saline solution (controls). Two hours after the last injection, animals were euthanized, and blood was collected. Results demonstrated that MPH did not alter the dichlorofluorescein formed, decreased both thiobarbituric acid reactive substances and total non-enzymatic radical-trapping antioxidant, and increased superoxide dismutase and catalase activities, suggesting that this psychostimulant may alter antioxidant defenses. BuChE activity was increased in blood of juvenile rats subjected to chronic MPH administration. These findings suggest that MPH may promote peripheral oxidative adaptations and cholinergic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chase TD, Brown RE, Carrey N, Wilkinson M (2003) Daily methylphenidate administration attenuates c-fos expression in the striatum of prepubertal rats. Neuroreport 15:769–772

    Article  Google Scholar 

  2. Banaschewski T, Coghill D, Santosh P, Zuddas A, Asherson P, Buitelaar J et al (2006) Long-acting medications for the hyperkinetic disorders. A systematic review and European treatment guideline. Eur Child Adolesc Psychiatry 15:476–495

    Article  PubMed  Google Scholar 

  3. Faraone SV, Sergeant J, Gillberg C, Biederman J (2003) The worldwide prevalence of ADHD: is it an American condition? World Psychiatry 2:104–113

    PubMed  Google Scholar 

  4. Faraone SV (2004) Genetics of adult attention deficit hyperactivity disorder. In: Spencer T (ed) Psychiatric clinics of North America. Saunders Press, Philadelphia, pp 3030–3321

    Google Scholar 

  5. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS et al (1998) Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 155:1325–1331

    PubMed  CAS  Google Scholar 

  6. Greenhill LL (2001) Clinical effects of stimulant medication in attention-deficit/hyperactivity disorder (ADHD). In: Solanto MV, Arnsten AFT, Castellanos FX (eds) Stimulant drugs and ADHD: basic and clinical neuroscience. Oxford University Press, New York, pp 31–71

    Google Scholar 

  7. Syed RH, Moore TL (2008) Methylphenidate and dextroamphetamine-induced peripheral vasculopathy. J Clin Rheumatol 14:30–33

    Article  PubMed  Google Scholar 

  8. Yu ZJ, Parker-Kotler C, Tran K, Weller RA, Weller EB (2010) Peripheral vasculopathy associated with psychostimulant treatment in children with attention-deficit/hyperactivity disorder. Curr Psychiatry Rep 12:111–115

    Article  PubMed  Google Scholar 

  9. Wattanapitayakul SK, Bauer JA (2001) Oxidative pathways in cardiovascular disease: roles, mechanisms, and therapeutic implications. Pharmacol Ther 89:187–206

    Article  PubMed  CAS  Google Scholar 

  10. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  11. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York, p 851

    Google Scholar 

  12. Martins MR, Reinke A, Petronilho FC, Gomes KM, Dal-Pizzol F, Quevedo J (2006) Methylphenidate treatment induces oxidative stress in young rat brain. Brain Res 1078:189–197

    Article  PubMed  CAS  Google Scholar 

  13. Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 17:131–138

    Article  Google Scholar 

  14. Massoulié J, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  PubMed  Google Scholar 

  15. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyse acetylcholine. Neuroscience 110:627–639

    Article  PubMed  CAS  Google Scholar 

  16. Alcantara VM, Chautard-Freire-Maia EA, Scartezini M, Cerci MS, Braun-Prado K, Picheth G (2002) Butyrylcholinesterase activity and risk factors for coronary artery disease. Scand J Clin Lab Investig 62:399–404

    Article  CAS  Google Scholar 

  17. Stefanello FM, Franzon R, Tagliari B, Wannmacher CMD, Wajner M, Wyse ATS (2005) Reduction of butyrylcholinesterase activity in rat serum subjected to hyperhomocysteinemia. Metab Brain Dis 20:97–103

    Article  PubMed  CAS  Google Scholar 

  18. Gerasimov MR, Franceschi M, Volkow ND, Gifford A, Gatley SJ, Marsteller D et al (2000) Comparison between intraperitoneal and oral methylphenidate administration: a microdialysis and locomotor activity study. J Pharmacol Exp Ther 295:51–57

    PubMed  CAS  Google Scholar 

  19. Andreazza AC, Frey BN, Valvassori SS, Zanotto C, Gomes KM, Comim CM et al (2007) DNA damage in rats after treatment with methylphenidate. Prog Neuropsychopharmacol Biol Psychiatry 31:1282–1288

    Article  PubMed  CAS  Google Scholar 

  20. LeBel CP, Ali SF, McKee M, Bondy SC (1990) Organometal-induced increases in oxygen reactive species: the potential of 2′,7′-dichlorofluorescein diacetate as an index of neurotoxic damage. Toxicol Appl Pharmacol 104:17–24

    Article  PubMed  CAS  Google Scholar 

  21. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  22. Lissi E, Pascual C, Del Castillo MD (1992) Luminol luminescence induced by 2,2′-azo-bis-(2-amidinopropane) thermolysis. Free Radic Res Commun 17:299–311

    Article  PubMed  CAS  Google Scholar 

  23. Evelson P, Travacio M, Repetto M, Escobar J, Llesuy S, Lissi EA (2001) Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosols. Arch Biochem Biophys 388:261–266

    Article  PubMed  CAS  Google Scholar 

  24. Marklund SL (1985) Pyrogallol autoxidation. In: Handbook for oxygen radical research. CRC Press, Boca Raton, pp 243–247

  25. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  26. Wendel A (1981) Glutathione peroxidase. Methods Enzymol 77:325–333

    Article  PubMed  CAS  Google Scholar 

  27. Ignarro LJ, Fukuto JM, Griscavage JM, Rogers NE, Byrns RE (1993) Oxidation of nitric oxide in aqueous solution to nitrite but not to nitrate: comparison with enzymatically formed nitric oxide from l-arginine. Proc Natl Acad Sci USA 90:8103–8107

    Article  PubMed  CAS  Google Scholar 

  28. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem 126:131–138

    Article  PubMed  CAS  Google Scholar 

  29. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  CAS  Google Scholar 

  30. Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-die-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  31. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  32. Safer DJ, Allen RP (1989) Absence of tolerance to the behavioral effects of methylphenidate in hyperactive and inattentive children. J Pediatr 115:1003–1008

    Article  PubMed  CAS  Google Scholar 

  33. Garland EJ (1998) Pharmacolotherapy of adolescent attention deficit hyperactivity disorder: challenges, choice and caveats. J Psychopharmacol 12:385–395

    Article  PubMed  CAS  Google Scholar 

  34. Wigal T, Swanson JM, Regino R, Lerner MA, Soliman I, Steinhoff K (1999) Stimulant medications for the treatment of ADHD: efficacy and limitations. Ment Retard Dev Disabil Res Rev 5:215–224

    Article  Google Scholar 

  35. Challman TD, Lipsky JJ (2000) Methylphenidate: its pharmacology and uses. Mayo Clin Proc 75:711–721

    Article  PubMed  CAS  Google Scholar 

  36. Biederman J, Mick E, Faraone SV (2000) Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type. Am J Psychiatry 157:816–818

    Article  PubMed  CAS  Google Scholar 

  37. Kuczenski R, Segal DS (2001) Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. J Pharmacol Exp Ther 296:876–883

    PubMed  CAS  Google Scholar 

  38. Swanson JM, Volkow ND (2002) Pharmacokinetic and pharmacodynamic properties of stimulants: implications for the design of new treatments for ADHD. Behav Brain Res 130:73–78

    Article  PubMed  CAS  Google Scholar 

  39. Gomes KM, Inácio CG, Valvassori SS, Réus GZ, Boeck CR, Dal-Pizzol F et al (2009) Superoxide production after acute and chronic treatment with methylphenidate in young and adult rats. Neurosci Lett 465:95–98

    Article  PubMed  CAS  Google Scholar 

  40. Scherer EB, Matté C, Ferreira AG, Gomes KM, Comim CM, Mattos C et al (2009) Methylphenidate treatment increases Na(+), K(+)-ATPase activity in the cerebrum of young and adult rats. J Neural Transm 116:1681–1687

    Article  PubMed  CAS  Google Scholar 

  41. Matés JM, Pérez-Gómez C, Núñez de Castro I (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603

    Article  PubMed  Google Scholar 

  42. Gutteridge JMC (2001) Free radicals in biology and medicine, 4th edn. Oxford University Press, New York, p 851

    Google Scholar 

  43. Cooke MS, Evans MD, Dove R, Rozalski R, Gackowski D, Siomek A et al (2005) DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. Mutat Res 574:58–66

    Article  PubMed  CAS  Google Scholar 

  44. Culmsee C, Mattson MP (2005) p53 in Neuronal apoptosis. Biochem Biophys Res Commun 331:761–777

    Article  PubMed  CAS  Google Scholar 

  45. Tuteja N, Chandra M, Tuteja R, Misra MK (2004) Nitric oxide as a unique bioactive signaling messenger in physiology and pathophysiology. J Biomed Biotechnol 2004:227–237

    Article  PubMed  Google Scholar 

  46. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61

    Article  PubMed  CAS  Google Scholar 

  47. Witt KL, Shelby MD, Itchon-Ramos N, Faircloth M, Kissling GE, Chrisman AK et al (2008) Methylphenidate and amphetamine do not induce cytogenetic damage in lymphocytes of children with ADHD. J Am Acad Child Adolesc Psychiatry 47:1375–1383

    Article  PubMed  Google Scholar 

  48. Ballard JE, Boileau RA, Sleator EK, Massey BH, Sprague RL (1976) Cardiovascular responses of hyperactive children to methylphenidate. JAMA 236:2870–2874

    Article  PubMed  CAS  Google Scholar 

  49. Brown RT, Wynne ME, Slimmer LW (1984) Attention deficit disorder and the effect of methylphenidate on attention, behavioral, and cardiovascular functioning. J Clin Psychiatry 45:473–476

    PubMed  CAS  Google Scholar 

  50. Stowe CD, Gardner SF, Gist CC, Schulz EG, Wells TG (2002) 24-Hour ambulatory blood pressure monitoring in male children receiving stimulant therapy. Ann Pharmacother 36:1142–1149

    Article  PubMed  CAS  Google Scholar 

  51. Scherer EB, da Cunha MJ, Matté C, Schmitz F, Netto CA, Wyse AT (2010) Methylphenidate affects memory, brain-derived neurotrophic factor immunocontent and brain acetylcholinesterase activity in the rat. Neurobiol Learn Mem 94:247–253

    Article  PubMed  CAS  Google Scholar 

  52. Tzavara ET, Bymaster FP, Overshiner CD, Davis RJ, Perry KW, Wolff M et al (2006) Procholinergic and memory enhancing properties of the selective norepinephrine uptake inhibitor atomoxetine. Mol Psychiatry 11:187–195

    Article  PubMed  CAS  Google Scholar 

  53. Rao AA, Sridhar GR, Das UM (2007) Elevated butyrylcholinesterase and acetylcholinesterase may predict the development of type 2 diabetes mellitus and Alzheimer’s disease. Med Hypotheses 69:1272–1276

    Article  PubMed  CAS  Google Scholar 

  54. Sridhar GR, Rao AA, Srinivas K, Nirmala G, Lakshmi G, Suryanarayna D et al (2010) Butyrylcholinesterase in metabolic syndrome. Med Hypotheses 75:648–651

    Article  PubMed  CAS  Google Scholar 

  55. Giacobini E (2000) In: Giacobini E (ed) Cholinesterases and cholinesterase inhibitors. Martin Dunitz Ltd, London, pp 181–226

    Google Scholar 

  56. Crippa GE, Peres-Polon VL, Kuboyama RH, Correa FM (1999) Cardiovascular response to the injection of acetylcholine into the anterior cingulate region of the medial prefrontal cortex of unanesthetized rats. Cereb Cortex 9:362–365

    Article  PubMed  CAS  Google Scholar 

  57. Goodman LS, Gilman A (2003) Agonists and antagonists of muscarinic. In: Brown JH, Taylor P (eds) The pharmacological basis of therapeutics, 10th edn. McGraw Hill, Rio de Janeiro, pp 119–132

  58. Klein-Schwartz W (1996) Abuse and toxicity of methylphenidate. Curr Opin Pediatr 14:219–223

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Terezinha de Souza Wyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitz, F., Scherer, E.B.d., da Cunha, M.J. et al. Chronic methylphenidate administration alters antioxidant defenses and butyrylcholinesterase activity in blood of juvenile rats. Mol Cell Biochem 361, 281–288 (2012). https://doi.org/10.1007/s11010-011-1113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-1113-x

Keywords

Navigation