Skip to main content

Advertisement

Log in

Early cardiovascular changes occurring in diet-induced, obese insulin-resistant rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The metabolic syndrome is recognized as a cluster of disturbances associated with obesity, type 2 diabetes and hypertension. Over the past two decades, the number of people with the metabolic syndrome has increased at an alarming rate. This increase is associated with the global epidemic of both obesity and diabetes. Cardiovascular mortality is increased among diabetics and obesity-related insulin-resistant patients, and obesity is currently recognized as independent risk factor for cardiovascular disease. We aimed to establish the effects of a short period of an altered diet on the heart using a rat model of hyperphagia-induced obesity (diet supplemented with sucrose and condensed milk for 8 weeks = DIO) compared to age-matched controls. Isolated, perfused hearts were subjected to global or regional ischaemia/reperfusion. Function on reperfusion was recorded and infarct size determined. A plasma lipid profile was established via HPLC-based methods and proteins involved in metabolic signalling determined either by western blotting or RT-PCR. 8 weeks of diet resulted in whole-body but not myocardial insulin resistance, increased plasma triglyceride and phospholipid levels as well as increased lipid peroxidation. Despite the similar baseline function, hearts from DIO animals showed significantly poorer postischaemic recovery than controls (41.9 % RPP recovery vs 57.9 %, P < 0.05, n = 7–11/group) but surprisingly, smaller infarct size (24.95 ± 1.97 vs 47.26 ± 4.05 % of the area at risk, P < 0.005, n = 8/group). Basal phosphorylation of PKB/Akt was elevated but IRS-1 and SERCA-2 expression severely downregulated. In conclusion, after only 8 weeks of a slight change in diet, the rat heart shows signs of metabolic remodelling. Some of these changes may be protective but others may be detrimental and eventually lead to maladaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reaven GM (1988) The role of insulin resistance in human disease. Diabetes 37:1595–1602

    Article  PubMed  CAS  Google Scholar 

  2. Haffner SM (2000) Obesity and the metabolic syndrome: the San Antonio Heart Study. British J Nutr 83(Suppl 1):S67–S70

    CAS  Google Scholar 

  3. Grundy SM (2006) Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol 47:1093–1100

    Article  PubMed  CAS  Google Scholar 

  4. Alexander CM, Landsman PB, Teusch SM, Haffner SM (2003) NCEP-defined metabolic syndrome, diabetes and prevalence of coronary heart disease among NHANES III participants age 50 years and older. Diabetes 52:1210–1213

    Article  PubMed  CAS  Google Scholar 

  5. Balkau B, Charles MA (1999) Comment on the provisional report from the WHO Consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med 16:441–443

    Article  Google Scholar 

  6. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation and Treatment of High blood Cholesterol in Adults (2002) Third report of the NCEP—adult treatment panel III, final report. Circulation 106:3143–3421

    Google Scholar 

  7. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  8. Pyörälä K (1991) Hyperinsulinaemia as predictor of atherosclerotic vascular disease, epidemiological evidence. Diabetes Metab 17:87–92

    Google Scholar 

  9. Turner RC, Millns H, Neil HA, Stratton IM, Manley SE, Matthews DR, Holman RR (1998) Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom prospective Diabetes Study (UKPDS:23). BMJ 316:823–828

    Article  PubMed  CAS  Google Scholar 

  10. Smith SC Jr (2007) Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J Med 120:S3–S11

    Article  PubMed  Google Scholar 

  11. Rader DJ (2007) Effect of insulin resistance, dyslipidemia and intra-abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med 120:S12–S18

    Article  PubMed  CAS  Google Scholar 

  12. Hu FB, Stampfer MJ, Haffner SM, Soloman CG, Willett WC, Manson JF (2002) Elevated risk of cardiovascular disease prior to clinical diagnosis of type 2 diabetes. Diabetes Care 25:1129–1134

    Article  PubMed  Google Scholar 

  13. Huisamen B, Pêrel SJC, Friedrich SO, Salie R, Strijdom H, Lochner A (2011) AngII receptor antagonism improves nitric oxide production, eNOS and PKB expression in hearts from a rat model of insulin resistance. Mol Cell Biochem 349:21–31

    Article  PubMed  CAS  Google Scholar 

  14. Du Toit EF, Smith W, Muller C, Strijdom H, Stouthammer B, Woodiwiss AJ, Norton GR, Lochner A (2008) Myocardial susceptibility to ischemic–reperfusion injury in a prediabetic model of dietary-induced obesity. Am J Physiol Heart Circ Physiol 294:H2343–H2366

    Google Scholar 

  15. Naderali EK, Pickavance LC, Wilding JPH, Williams G (2001) Diet-induced endothelial dysfunction in the rat is independent of the degree of increase in total body weight. Clin Sci 100:635–641

    Article  PubMed  CAS  Google Scholar 

  16. Huisamen B, Genis A, Lochner A (2011) Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther 25:13–20

    Article  PubMed  CAS  Google Scholar 

  17. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  18. Esterbauer H, Striegl G, Puhl H, Rotheneder M (1989) Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic Res Commun 6:67–75

    Article  PubMed  CAS  Google Scholar 

  19. Pryor WA, Castle L (1984) Chemical methods for the detection of lipid hydroperoxides. Methods Enzymol 105:293–299

    Article  PubMed  CAS  Google Scholar 

  20. Jiang Z-Y, Woollard ACS, Wolff SP (1991) Lipid hydroperoxide measurement by oxidation of Fe2+ in the presence of xylenol orange. Comparison with the TBA Assay and an iodometric method. Lipids 26:853–856

    Article  PubMed  CAS  Google Scholar 

  21. Jiang Z-Y, Hunt JV, Wolff SP (2002) Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal Biochem 202:384–389

    Article  Google Scholar 

  22. Markwell MA, Haas SM, Bieber LL, Tolbert NE (1979) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87:206–210

    Article  Google Scholar 

  23. Lochner A, Genade S, Moolman JA (2003) Ischemic preconditioning: infarct size is a more reliable endpoint than functional recovery. Basic Res Cardiol 98:337–346

    Article  PubMed  CAS  Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  25. Venter H, Genade S, Mouton R, Huisamen B, Harper IS, Lochner A (1991) Myocardial membrane cholesterol: effects of ischaemia. J Mol Cell Cardiol 23:1271–1286

    Article  PubMed  CAS  Google Scholar 

  26. Ritchie SA, Connell JMC (2007) The link between abdominal obesity, metabolic syndrome and cardiovascular disease. Nutr Metab Cardiovasc Dis 17:319–326

    Article  PubMed  CAS  Google Scholar 

  27. Bergman RN, Kim SP, Hsu IR, Catalano KJ, Chiu JD, Kabir M, Richey JM, Ader M (2007) Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med 120:S3–S8

    Article  PubMed  CAS  Google Scholar 

  28. Olefsky JM, Glass CK (2010) Macrophages, inflammation and insulin resistance. Ann Rev Physiol 72:219–246

    Article  CAS  Google Scholar 

  29. Matthews DR, Hosaker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (2002) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetes Care 25:1891–1892

    Article  Google Scholar 

  30. Cacho J, Sevillano J, De Castro J, Herrera E, Ramos MP (2008) Validation of simple indexes to assess insulin sensitivity during pregnancy in Wistar and Sprague-Dawley rats. Am J Physiol Endocrinol Metab 295:E1269–E1276

    Article  PubMed  CAS  Google Scholar 

  31. Park S-Y, Cho Y-R, Kim H-J et al (2005) Unraveling the temporal pattern of diet-induced insulin resistance in individual organs and cardiac dysfunction in C57BL/6 mice. Diabetes 54:3530–3540

    Article  PubMed  CAS  Google Scholar 

  32. Araki E, Lipes MA, Patti ME et al (1994) Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 372:186–190

    Article  PubMed  CAS  Google Scholar 

  33. Matsiu T, Tao J, Del Monte F et al (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335

    Article  Google Scholar 

  34. Jonassen AK, Sack MN, Mjøs OD, Yellon DM (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–1198

    Article  PubMed  CAS  Google Scholar 

  35. Young ME, McNulty P, Taegtmeyer H (2002) Adaptation and maladaptation of the heart in diabetes: part II: potential mechanisms. Circ 105:1861–1870

    Article  CAS  Google Scholar 

  36. Russell RR III, Coven DL, Pypaert M et al (2004) AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest 114:495–503

    PubMed  CAS  Google Scholar 

  37. Stanley WC, Dabkowski ER, Fibeiro RF Jr, O’Connell KA (2012) Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ Res 110:764–776

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Huisamen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huisamen, B., Dietrich, D., Bezuidenhout, N. et al. Early cardiovascular changes occurring in diet-induced, obese insulin-resistant rats. Mol Cell Biochem 368, 37–45 (2012). https://doi.org/10.1007/s11010-012-1340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1340-9

Keywords

Navigation