Skip to main content
Log in

SRPK1 contributes to malignancy of hepatocellular carcinoma through a possible mechanism involving PI3K/Akt

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Protein kinases are important regulators in biologic processes. Aberrant expression of protein kinases often causes diseases including cancer. In the present study, we found that the serine-arginine protein kinase 1 (SRPK1) might be involved in hepatocellular carcinoma (HCC) proliferation from a kinome screen using a loss-of-function approach. In clinical samples, SRPK1 was frequently up-regulated in HCCs as compared with adjacent non-tumor tissues at both mRNA and protein levels. Functional studies indicated that overexpression of wild-type SRPK1 promoted HCC cell proliferation, while forced expression of the kinase-dead mutant of SRPK1 or RNA interference against SRPK1 suppressed cell growth and malignancy as measured in soft agar assay. The kinase-dead mutant of SRPK1 also inhibited subcutaneous xenografts’ growth of HCC cells in nude mice. Furthermore, western bolt analysis showed overexpression of wild-type SRPK1 enhanced Akt phosphorylation and knockdown of SRPK1 by RNA interference attenuated Akt phosphorylation induced by epidermal growth factor. Meanwhile, overexpression of wild-type SRPK1 also induced a concurrent increase in the total tyrosine phosphorylation of phosphotidylinositol-3 kinase p110α subunit, indicating a functional link between SRPK1 and PI3K/Akt signaling. Our findings suggest that SRPK1 plays an oncogenic role and could be a potential therapeutic target in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Berger MF, Hodis E, Heffernan TP et al (2012) Melanoma genome sequencing reveals frequent PREX2 mutations. Nature 485:502–506. doi:10.1038/nature11071

    PubMed  CAS  Google Scholar 

  2. Hsu IC, Metcalf RA, Sun T et al (1991) Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature 350:427–428. doi:10.1038/350427a0

    Article  PubMed  CAS  Google Scholar 

  3. Hoon DS, Spugnardi M, Kuo C, Huang SK, Morton DL, Taback B (2004) Profiling epigenetic inactivation of tumor suppressor genes in tumors and plasma from cutaneous melanoma patients. Oncogene 23:4014–4022. doi:10.1038/sj.onc.1207505

    Article  PubMed  CAS  Google Scholar 

  4. Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231. doi:10.1038/nature10833

    Article  PubMed  CAS  Google Scholar 

  5. Ho L, Stojanovski A, Whetstone H, Wei QX, Mau E, Wunder JS, Alman B (2009) Gli2 and p53 cooperate to regulate IGFBP-3- mediated chondrocyte apoptosis in the progression from benign to malignant cartilage tumors. Cancer Cell 16:126–136. doi:10.1016/j.ccr.2009.05.013

    Article  PubMed  CAS  Google Scholar 

  6. Cohen P (2000) The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem Sci 25:596–601

    Article  PubMed  CAS  Google Scholar 

  7. Duvvuri U, Shiwarski DJ, Xiao D et al (2012) TMEM16A induces MAPK and contributes directly to tumorigenesis and cancer progression. Cancer Res 72:3270–3281. doi:10.1158/0008-5472.CAN-12-0475-T

    Article  PubMed  CAS  Google Scholar 

  8. Xiao D, Herman-Antosiewicz A, Antosiewicz J, Xiao H, Brisson M, Lazo JS, Singh SV (2005) Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 °C. Oncogene 24:6256–6268. doi:10.1038/sj.onc.1208759

    Article  PubMed  CAS  Google Scholar 

  9. Zhang D, Vuocolo S, Masciullo V, Sava T, Giordano A, Soprano DR, Soprano KJ (2001) Cell cycle genes as targets of retinoid induced ovarian tumor cell growth suppression. Oncogene 20:7935–7944. doi:10.1038/sj.onc.1204971

    Article  PubMed  CAS  Google Scholar 

  10. Ding JH, Zhong XY, Hagopian JC, Cruz MM, Ghosh G, Feramisco J, Adams JA, Fu XD (2006) Regulated cellular partitioning of SR protein-specific kinases in mammalian cells. Mol Biol Cell 17:876–885. doi:10.1091/mbc.E05-10-0963

    Article  PubMed  CAS  Google Scholar 

  11. Hayes GM, Carrigan PE, Beck AM, Miller LJ (2006) Targeting the RNA splicing machinery as a novel treatment strategy for pancreatic carcinoma. Cancer Res 66:3819–3827. doi:10.1158/0008-5472.CAN-05-4065

    Article  PubMed  CAS  Google Scholar 

  12. Hayes GM, Carrigan PE, Miller LJ (2007) Serine-arginine protein kinase 1 overexpression is associated with tumorigenic imbalance in mitogen-activated protein kinase pathways in breast, colonic, and pancreatic carcinomas. Cancer Res 67:2072–2080. doi:10.1158/0008-5472.CAN-06-2969

    Article  PubMed  CAS  Google Scholar 

  13. Krishnakumar S, Mohan A, Kandalam M et al (2008) SRPK1: a cisplatin sensitive protein expressed in retinoblastoma. Pediatr Blood Cancer 50:402–406. doi:10.1002/pbc.21088

    Article  PubMed  Google Scholar 

  14. Amin EM, Oltean S, Hua J et al (2011) WT1 mutants reveal SRPK1 to be a downstream angiogenesis target by altering VEGF splicing. Cancer Cell 20:768–780. doi:10.1016/j.ccr.2011.10.016

    Article  PubMed  CAS  Google Scholar 

  15. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917. doi:10.1016/S0140-6736(03)14964-1

    Article  PubMed  Google Scholar 

  16. Daub H, Blencke S, Habenberger P, Kurtenbach A, Dennenmoser J, Wissing J, Ullrich A, Cotten M (2002) Identification of SRPK1 and SRPK2 as the major cellular protein kinases phosphorylating hepatitis B virus core protein. J Virol 76:8124–8137

    Article  PubMed  CAS  Google Scholar 

  17. Deng Q, Wang Q, Zong WY, Zheng DL, Wen YX, Wang KS, Teng XM, Zhang X, Huang J, Han ZG (2010) E2F8 contributes to human hepatocellular carcinoma via regulating cell proliferation. Cancer Res 70:782–791. doi:10.1158/0008-5472.CAN-09-3082

    Article  PubMed  CAS  Google Scholar 

  18. Zhou B, Zhuang J, Gu D, Wang H, Cebotaru L, Guggino WB, Cai H (2010) WNK4 enhances the degradation of NCC through a sortilin-mediated lysosomal pathway. J Am Soc Nephrol 21:82–92. doi:10.1681/ASN.2008121275

    Article  PubMed  CAS  Google Scholar 

  19. Huang J, Zheng DL, Qin FS, Cheng N, Chen H, Wan BB, Wang YP, Xiao HS, Han ZG (2010) Genetic and epigenetic silencing of SCARA5 may contribute to human hepatocellular carcinoma by activating FAK signaling. J Clin Invest 120:223–241. doi:10.1172/JCI38012

    Article  PubMed  CAS  Google Scholar 

  20. Jang SW, Yang SJ, Ehlen A, Dong S, Khoury H, Chen J, Persson JL, Ye K (2008) Serine/arginine protein-specific kinase 2 promotes leukemia cell proliferation by phosphorylating acinus and regulating cyclin A1. Cancer Res 68:4559–4570. doi:10.1158/0008-5472.CAN-08-0021

    Article  PubMed  CAS  Google Scholar 

  21. Yeakley JM, Tronchère H, Olesen J, Dyck JA, Wang HY, Fu XD (1999) Phosphorylation regulates in vivo interaction and molecular targeting of serine/arginine-rich pre-mRNA splicing factors. J Cell Biol 145(3):447–455 May 3

    Article  PubMed  CAS  Google Scholar 

  22. Gatza CE, Holtzhausen A, Kirkbride KC, Morton A, Gatza ML, Datto MB, Blobe GC (2011) Type III TGF-beta receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia 13:758–770

    PubMed  CAS  Google Scholar 

  23. Ghosh G, Adams JA (2011) Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J 278:587–597. doi:10.1111/j.1742-4658.2010.07992.x

    Article  PubMed  CAS  Google Scholar 

  24. El Sheikh SS, Domin J, Abel P, Stamp G, el Lalani N (2004) Phosphorylation of both EGFR and ErbB2 is a reliable predictor of prostate cancer cell proliferation in response to EGF. Neoplasia 6:846–853. doi:10.1593/neo.04379

    Article  PubMed  Google Scholar 

  25. Martin-Orozco RM, Almaraz-Pro C, Rodriguez-Ubreva FJ, Cortes MA, Ropero S, Colomer R, Lopez-Ruiz P, Colas B (2007) EGF prevents the neuroendocrine differentiation of LNCaP cells induced by serum deprivation: the modulator role of PI3K/Akt. Neoplasia 9:614–624

    Article  PubMed  CAS  Google Scholar 

  26. Neri LM, Borgatti P, Capitani S, Martelli AM (2002) The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. Biochim Biophys Acta 1584:73–80

    Article  PubMed  CAS  Google Scholar 

  27. Zhou Z, Qiu J, Liu W, Zhou Y, Plocinik RM, Li H, Hu Q, Ghosh G, Adams JA, Rosenfeld MG, Fu XD (2012) The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol Cell Aug 10 47(3):422–433

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. Xiao Xu and Rui-fang Liu for helpful discussions and technical assistance. This work was supported by grants from the Chinese National Key Program on Basic Research (973 Program) (2010CB529204 and 2010CB529206), the Chinese National Key Projects for Infectious Disease(2012ZX10002012-008), and the Chinese Postdoctoral Science Foundation Award (20110490764).

Disclosure of Potential Conflict of interest

The authors declare that no conflicts of interest exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Guang Han.

Additional information

Bo Zhou and Yandong Li contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 345 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Li, Y., Deng, Q. et al. SRPK1 contributes to malignancy of hepatocellular carcinoma through a possible mechanism involving PI3K/Akt. Mol Cell Biochem 379, 191–199 (2013). https://doi.org/10.1007/s11010-013-1641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-013-1641-7

Keywords

Navigation