Skip to main content

Advertisement

Log in

MiR-1224-5p acts as a tumor suppressor by targeting CREB1 in malignant gliomas

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The dysregulation of miR-1224-5p has been reported in several human cancers. However, the expression and function of miR-1224-5p in glioma remains unknown. The aim of our study was to investigate the effect of miR-1224-5p on glioma cells and to determine its functional signaling mediators. Using 198 glioma samples within the Chinese Glioma Genome Atlas expression dataset, we demonstrated that miR-1224-5p expression is decreased in high-grade gliomas when compared with low-grade gliomas. Differential miR-1224-5p expression in 50 randomly selected samples was verified by in situ hybridization. The expression of miR-1224-5p was shown to positively correlate with overall survival in 82 glioblastoma patients. Exogenous expression of miR-1224-5p in glioma cells suppressed proliferation and invasion and promoted apoptosis. Target prediction algorithms identified a consensus miR-1224-5p recognition site in the 3′UTR of the cAMP response element-binding protein (CREB1) gene, and this sequence was shown to directly confer miR-1224-5p repression in luciferase reporter assays. Furthermore, exogenous miR-1224-5p expression was shown to down-regulate CREB1, as well as its downstream target genes matrix metalloproteinase-9 and B-cell lymphoma-2. Conversely, over-expression of CREB1 reversed the effect of miR-1224-5p on the proliferation, invasion, and apoptosis of glioma cells. These data indicate that miR-1224-5p may inhibit tumor-associated activity in malignant gliomas by targeting CREB1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67:279–283. doi:10.1001/archneurol.2010.5

    Article  PubMed  Google Scholar 

  2. Saika K, Katanoda K (2011) Comparison of time trends in brain and central nervous system cancer mortality (1990–2006) between countries based on the WHO mortality database. Jpn J Clin Oncol 41:304–305. doi:10.1093/jjco/hyr004

    Article  PubMed  Google Scholar 

  3. Yan W, Zhang W, Jiang T (2011) Oncogene addiction in gliomas: implications for molecular targeted therapy. J Exp Clin Cancer Res 30:58. doi:10.1186/1756-9966-30-58

    Article  PubMed Central  PubMed  Google Scholar 

  4. Tate MC, Aghi MK (2009) Biology of angiogenesis and invasion in glioma. Neurotherapeutics 6:447–457. doi:10.1016/j.nurt.2009.04.001

    Article  CAS  PubMed  Google Scholar 

  5. Yue J, Tigyi G (2006) MicroRNA trafficking and human cancer. Cancer Biol Ther 5:573–578

    Article  CAS  PubMed  Google Scholar 

  6. Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300:10–19. doi:10.1016/j.canlet.2010.09.019

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zhang CM, Zhao J, Deng HY (2013) MiR-155 promotes proliferation of human breast cancer MCF-7 cells through targeting tumor protein 53-induced nuclear protein 1. J Biomed Sci 20:79. doi:10.1186/1423-0127-20-79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wang XF, Shi ZM, Wang XR, Cao L, Wang YY, Zhang JX, Yin Y, Luo H, Kang CS, Liu N, Jiang T, You YP (2012) MiR-181d acts as a tumor suppressor in glioma by targeting K-ras and Bcl-2. J Cancer Res Clin Oncol 138:573–584. doi:10.1007/s00432-011-1114-x

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Zhang J, Hao J, Shi Z, Wang Y, Han L, Yu S, You Y, Jiang T, Wang J, Liu M, Pu P, Kang C (2012) High level of miR-221/222 confers increased cell invasion and poor prognosis in glioma. J Transl Med 10:119. doi:10.1186/1479-5876-10-119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Krishnan K, Steptoe AL, Martin HC, Pattabiraman DR, Nones K, Waddell N, Mariasegaram M, Simpson PT, Lakhani SR, Vlassov A, Grimmond SM, Cloonan N (2013) MiR-139-5p is a regulator of metastatic pathways in breast cancer. RNA. doi:10.1261/rna.042143.113

    Google Scholar 

  11. Spaccarotella E, Pellegrino E, Ferracin M, Ferreri C, Cuccuru G, Liu C, Iqbal J, Cantarella D, Taulli R, Provero P, Di Cunto F, Medico E, Negrini M, Chan WC, Inghirami G, Piva R (2013) STAT3-mediated activation of microRNA cluster 17–92 promotes proliferation and survival of ALK positive anaplastic large cell lymphoma. Haematologica. doi:10.3324/haematol.2013.088286

    PubMed  Google Scholar 

  12. Tokarz P, Blasiak J (2012) The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochim Pol 59:467–474

    CAS  PubMed  Google Scholar 

  13. Garofalo M, Jeon YJ, Nuovo GJ, Middleton J, Secchiero P, Joshi P, Alder H, Nazaryan N, Di Leva G, Romano G, Crawford M, Nana-Sinkam P, Croce CM (2013) MiR-34a/c-dependent PDGFR-alpha/beta downregulation inhibits tumorigenesis and enhances TRAIL-induced apoptosis in lung cancer. PLoS One 8:e67581. doi:10.1371/journal.pone.0067581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Feliciano A, Castellvi J, Artero-Castro A, Leal JA, Romagosa C, Hernandez-Losa J, Peg V, Fabra A, Vidal F, Kondoh H, Ramon YCS, Lleonart ME (2013) MiR-125b acts as a tumor suppressor in breast tumorigenesis via Its novel direct targets ENPEP, CK2-alpha, CCNJ, and MEGF9. PLoS One 8:e76247. doi:10.1371/journal.pone.0076247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kishikawa T, Otsuka M, Yoshikawa T, Ohno M, Takata A, Shibata C, Kondo Y, Akanuma M, Yoshida H, Koike K (2013) Regulation of the expression of the liver cancer susceptibility gene MICA by microRNAs. Sci Rep 3:2739. doi:10.1038/srep02739

    Article  PubMed Central  PubMed  Google Scholar 

  16. Rao SA, Arimappamagan A, Pandey P, Santosh V, Hegde AS, Chandramouli BA, Somasundaram K (2013) MiR-219-5p inhibits receptor tyrosine kinase pathway by targeting EGFR in glioblastoma. PLoS One 8:e63164. doi:10.1371/journal.pone.0063164

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mosakhani N, Lahti L, Borze I, Karjalainen-Lindsberg ML, Sundstrom J, Ristamaki R, Osterlund P, Knuutila S, Sarhadi VK (2012) MicroRNA profiling predicts survival in anti-EGFR treated chemorefractory metastatic colorectal cancer patients with wild-type KRAS and BRAF. Cancer Genet 205:545–551. doi:10.1016/j.cancergen.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  18. Della Vittoria Scarpati G, Falcetta F, Carlomagno C, Ubezio P, Marchini S, De Stefano A, Singh VK, D’Incalci M, De Placido S, Pepe S (2012) A specific miRNA signature correlates with complete pathological response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Int J Radiat Oncol Biol Phys 83:1113–1119. doi:10.1016/j.ijrobp.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  19. Nymark P, Guled M, Borze I, Faisal A, Lahti L, Salmenkivi K, Kettunen E, Anttila S, Knuutila S (2011) Integrative analysis of microRNA, mRNA and aCGH data reveals asbestos- and histology-related changes in lung cancer. Genes Chromosom Cancer 50:585–597. doi:10.1002/gcc.20880

    Article  CAS  PubMed  Google Scholar 

  20. Park JK, Park SH, So K, Bae IH, Yoo YD, Um HD (2010) ICAM-3 enhances the migratory and invasive potential of human non-small cell lung cancer cells by inducing MMP-2 and MMP-9 via Akt and CREB. Int J Oncol 36:181–192

    CAS  PubMed  Google Scholar 

  21. Zhang M, Xu JJ, Zhou RL, Zhang QY (2013) cAMP responsive element binding protein-1 is a transcription factor of lysosomal-associated protein transmembrane-4 beta in human breast cancer cells. PLoS One 8:e57520. doi:10.1371/journal.pone.0057520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pigazzi M, Manara E, Baron E, Basso G (2009) miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. Cancer Res 69:2471–2478. doi:10.1158/0008-5472.CAN-08-3404

    Article  CAS  PubMed  Google Scholar 

  23. Perry C, Sklan EH, Soreq H (2004) CREB regulates AChE-R-induced proliferation of human glioblastoma cells. Neoplasia 6:279–286. doi:10.1593/neo.3424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Sakamoto KM, Frank DA (2009) CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res 15:2583–2587. doi:10.1158/1078-0432.CCR-08-1137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Shukla A, Bosenberg MW, MacPherson MB, Butnor KJ, Heintz NH, Pass HI, Carbone M, Testa JR, Mossman BT (2009) Activated cAMP response element binding protein is overexpressed in human mesotheliomas and inhibits apoptosis. Am J Pathol 175:2197–2206. doi:10.2353/ajpath.2009.090400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Peng B, Hu S, Jun Q, Luo D, Zhang X, Zhao H, Li D (2013) MicroRNA-200b targets CREB1 and suppresses cell growth in human malignant glioma. Mol Cell Biochem 379:51–58. doi:10.1007/s11010-013-1626-6

    Article  CAS  PubMed  Google Scholar 

  27. Van Themsche C, Mathieu I, Parent S, Asselin E (2007) Transforming growth factor-beta3 increases the invasiveness of endometrial carcinoma cells through phosphatidylinositol 3-kinase-dependent up-regulation of X-linked inhibitor of apoptosis and protein kinase c-dependent induction of matrix metalloproteinase-9. J Biol Chem 282:4794–4802. doi:10.1074/jbc.M608497200

    Article  PubMed  Google Scholar 

  28. Liu G, Ding W, Neiman J, Mulder KM (2006) Requirement of Smad3 and CREB-1 in mediating transforming growth factor-beta (TGF beta) induction of TGF beta 3 secretion. J Biol Chem 281:29479–29490. doi:10.1074/jbc.M600579200

    Article  CAS  PubMed  Google Scholar 

  29. Perianayagam MC, Madias NE, Pereira BJ, Jaber BL (2006) CREB transcription factor modulates Bcl2 transcription in response to C5a in HL-60-derived neutrophils. Eur J Clin Invest 36:353–361. doi:10.1111/j.1365-2362.2006.01637.x

    Article  CAS  PubMed  Google Scholar 

  30. Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4:1179–1184

    Article  CAS  PubMed  Google Scholar 

  31. Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96(Suppl):R40–R44

    PubMed  Google Scholar 

  32. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838. doi:10.1038/nature03702

    Article  CAS  PubMed  Google Scholar 

  33. Xi JJ (2013) MicroRNAs in cancer. Cancer Treat Res 158:119–137. doi:10.1007/978-3-642-31659-3_5

    Article  PubMed  Google Scholar 

  34. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609. doi:10.1038/35085068

    Article  CAS  PubMed  Google Scholar 

  35. Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861. doi:10.1146/annurev.biochem.68.1.821

    Article  CAS  PubMed  Google Scholar 

  36. Majumder S, Varadharaj S, Ghoshal K, Monani U, Burghes AH, Jacob ST (2004) Identification of a novel cyclic AMP-response element (CRE-II) and the role of CREB-1 in the cAMP-induced expression of the survival motor neuron (SMN) gene. J Biol Chem 279:14803–14811. doi:10.1074/jbc.M308225200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Alvarez-Lopez C, Cernuda-Cernuda R, Paniagua MA, Alvarez-Viejo M, Fernandez-Lopez A, Garcia-Fernandez JM (2004) The transcription factor CREB is phosphorylated in neurons of the piriform cortex of blind mice in response to illumination of the retina. Neurosci Lett 357:223–226. doi:10.1016/j.neulet.2003.12.099

    Article  CAS  PubMed  Google Scholar 

  38. Thway K, Fisher C (2012) Tumors with EWSR1-CREB1 and EWSR1-ATF1 fusions: the current status. Am J Surg Pathol 36:e1–e11. doi:10.1097/PAS.0b013e31825485c5

    Article  PubMed  Google Scholar 

  39. Tan X, Wang S, Zhu L, Wu C, Yin B, Zhao J, Yuan J, Qiang B, Peng X (2012) cAMP response element-binding protein promotes gliomagenesis by modulating the expression of oncogenic microRNA-23a. Proc Natl Acad Sci USA 109:15805–15810. doi:10.1073/pnas.1207787109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National High Technology Research and Development Program of China (863) (2012AA02A508), the Research Special Fund For Public Welfare Industry of Health (201402008), National Natural Science Foundation of China (91229121, 81272792, 81472362, 81172389, 81372709, 81302185), Jiangsu Province’s Natural Science Foundation (20131019), Jiangsu Province’s Key Provincial Talents Program (RC2011051), Jiangsu Province’s Key Discipline of Medicine (XK201117), Jiangsu Provincial Special Program of Medical Science (BL2012028), and Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ping You.

Additional information

Jin Qian, Rui Li, and Ying-Yi Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Supplementary material 2 (TIFF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, J., Li, R., Wang, YY. et al. MiR-1224-5p acts as a tumor suppressor by targeting CREB1 in malignant gliomas. Mol Cell Biochem 403, 33–41 (2015). https://doi.org/10.1007/s11010-015-2334-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2334-1

Keywords

Navigation