Skip to main content
Log in

Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The present study was undertaken to evaluate the protective effects of genistein against cardiac inflammation and oxidative stress in streptozotocin (STZ) (45 mg/kg body weight)-induced diabetic rats. genistein (300 mg/kg/day) was administered orally for 24 weeks to STZ-induced diabetic rats. The effects of genistein on blood glucose, % glycosylated hemoglobin (HbA1c), C-reactive protein, tumor necrosis factor (TNF- α), transforming growth factor (TGF-β1), and total antioxidant were studied. Ultrastructural and histopathological assessment of injury were also undertaken using transmission electron microscope. STZ-induced diabetes resulted in significant increase in the levels of blood glucose, HbA1c, C-reactive protein, TNF- α and TGF-β1, and a decline in total antioxidant reserve of the myocardium. Administration of genistein to diabetic rats resulted in a decrease in blood glucose (p < 0.001),  % HbA1c (p < 0.0001), C-reactive protein (p < 0.001), and expression of TNF- α (p < 0.001) and TGF-β1 (p < 0.0001) proteins. In addition, genistein treatment results in augmentation of total antioxidant (p < 0.01) reserve of the hearts. The above findings were supported by histological as well as immunohistochemical localization of NF-κB (p65) in the heart. Genistein treatment ameliorated the ultrastructural degenerative changes in the cardiac tissues as compared to the diabetic control. The result demonstrates that genistein restored the integrity of the diabetic myocardium by virtue of its anti-inflammatory and antioxidant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dhalla NS, Liu X, Panagia V, Takeda N (1998) Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc Res 40:239–247

    Article  CAS  PubMed  Google Scholar 

  2. Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907

    Article  CAS  PubMed  Google Scholar 

  3. Guan SJ, Ma ZH, Wu YL, Zhang JP, Liang F, Weiss JW, Guo QY, Wang JY, Ji ES, Chu L (2012) Long-term administration of fasudil improves cardiomyopathy in streptozotocin-induced diabetic rats. Food Chem Toxicol 50:1874–1882

    Article  CAS  PubMed  Google Scholar 

  4. Falcao-Pires I, Leite-Moreira AF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 17:325–344

    Article  CAS  PubMed  Google Scholar 

  5. Hotamisligil GS (2006) Inflammation and metabolic disorders. Nature 444:860–867

    Article  CAS  PubMed  Google Scholar 

  6. Stratmann B, Tschoepe D (2011) The diabetic heart: sweet, fatty and stressed. Expert Rev Cardiovasc Ther 9:1093–1096

    Article  PubMed  Google Scholar 

  7. Ku PM, Chen LJ, Liang JR, Cheng KC, Li YX, Cheng JT (2011) Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc Diabetol 10:1–15

    Article  Google Scholar 

  8. Wen HL, Liang ZS, Zhang R, Yang K (2013) Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovasc Diabetol 12:1–11

    Article  Google Scholar 

  9. Wang G, Li W, Lu X, Bao P, Zhao X (2012) Luteolin ameliorates cardiac failure in type I diabetic cardiomyopathy. J Diabetes Complicat 4:259–265

    Article  Google Scholar 

  10. Rösen P, Nawroth PP, King G, Möller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of a Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212

    Article  PubMed  Google Scholar 

  11. Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song XY, Spillmann F, Riad A, Schultheiss HP, Tschöpe C (2007) Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 6:500–507

    Article  Google Scholar 

  12. Sara N, Edna S, Frederico P, Flávio R (2012) The role of inflammation in diabetic cardiomyopathy. Int J Infereron Cytokine Mediator Res 4:59–73

    Google Scholar 

  13. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, Quagliaro L, Ceriello A, Giugliano D (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106:2067–2072

    Article  CAS  PubMed  Google Scholar 

  14. Patel S, Santani D (2009) Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 4:595–603

    Article  Google Scholar 

  15. Rutter MK, Meigs JB, Sullivan LM, D’Agostino RB Sr, Wilson PW (2004) C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham Offspring Study. Circulation 110:380–385

    Article  CAS  PubMed  Google Scholar 

  16. Goyal BR, Mesariya P, Goyal RK, Mehta AA (2008) Effect of telmisartan on cardiovascular complications associated with streptozotocin diabetic rats. Mol Cell Biochem 314:123–131

    Article  CAS  PubMed  Google Scholar 

  17. Shah SJ, Marcus GM, Gerber IL, McKeown BH, Vessey JC, Jordan MV, Huddleston M, Foster E, Chatterjee K, Michaels AD (2006) High-sensitivity C-reactive protein and parameters of left ventricular dysfunction. J Card Fail 12:61–65

    Article  CAS  PubMed  Google Scholar 

  18. Kardys I, Knetsch AM, Bleumink GS, Deckers JW, Hofman A, Stricker BH, Witteman JC (2006) C-reactive protein and risk of heart failure: the Rotterdam Study. Am Heart J 152:514–520

    Article  CAS  PubMed  Google Scholar 

  19. Border WA, Noble NA (1995) Fibrosis linked to TGF-beta in yet another disease. J Clin Invest 2:655–656

    Article  Google Scholar 

  20. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 1:10–24

    Article  Google Scholar 

  21. Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP, Klovekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 7:984–991

    Article  Google Scholar 

  22. Bugyei-Twum A, Advani A, Advani SL, Zhang Y, Thai K, Kelly DJ, Connelly KA (2014) High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovasc Diabetol 13(89):1–12

    Google Scholar 

  23. Naderi GA, Asgary S, Sarraf-Zadegan N (2003) Anti-oxidant effect of flavonoids on the susceptibility of LDL oxidation. Mol Cell Biochem 246:193–196

    Article  CAS  PubMed  Google Scholar 

  24. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 12:5592–5595

    Google Scholar 

  25. Paradkar PN, Blum PS, Berhow MA, Baumann H, Kuo SM (2004) Dietary isoflavones suppress endotoxin-induced inflammatory reaction in liver and intestine. Cancer Lett 215:21–28

    Article  CAS  PubMed  Google Scholar 

  26. Park CE, Yun H, Lee EB, Min BI, Bae H, Choe W, Kang I, Kim SS, Ha J (2010) The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J Med Food 13:815–820

    Article  CAS  PubMed  Google Scholar 

  27. Gilbert ER, Liu D (2013) Anti-diabetic functions of soy isoflavone genistein: mechanisms underlying effects on pancreatic β-cell function. Food Funct 2:200–212

    Article  Google Scholar 

  28. Nakajima M, Cooney MJ, Tu AH, Chang KY, Cao J, Ando A, An GJ, Melia M, de Juan E Jr (2001) Normalization of retinal vascular permeability in experimental diabetes with genistein. Invest Ophthalmol Vis Sci 42:2110–2114

    CAS  PubMed  Google Scholar 

  29. Ramos JE, Al-Nakkash L, Peterson A, Gump BS, Janjulia T, Moore MS, Broderick TL, Carroll CC (2012) The soy isoflavone genistein inhibits the reduction in Achilles tendon collagen content induced by ovariectomy in rats. Scand J Med Sci Sports 5:e108–e114

    Article  Google Scholar 

  30. Zeng X, Feng Y, Yang L, Huang Y, Zhou D, Sun J, Liu Y, Deng Y (2008) Single- and multiple-dose pharmacokinetics of genistein capsules in healthy chinese subjects: a phase I, randomized, open-label study. Curr Ther Res Clin Exp 4:318–333

    Article  Google Scholar 

  31. Fouad AA, Al-Sultan AI, Yacoubi MT, Gomaa W (2010) Ameliorative effects of telmisartan in diabetic rats with indomethacin-induced gastric ulceration. Eur J Pharmacol 637:162–170

    Article  CAS  PubMed  Google Scholar 

  32. Yang W, Wang S, Li L, Liang Z, Wang L (2011) Genistein reduces hyperglycemia and islet cell loss in a high-dosage manner in rats with alloxan-induced pancreatic damage. Pancreas 40:396–402

    Article  CAS  PubMed  Google Scholar 

  33. Fu Z, Zhang W, Zhen W, Lum H, Nadler J, Bassaganya-Riera J, Jia Z, Wang Y, Misra H, Liu D (2010) Genistein induces pancreatic beta-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology 151:3026–3037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Elmarakby AA, Ibrahim AS, Faulkner J, Mozaffari MS, Liou GI, Abdelsayed R (2011) Tyrosine kinase inhibitor, genistein, reduces renal inflammation and injury in streptozotocin-induced diabetic mice. Vasc Pharmacol 55:149–156

    Article  CAS  Google Scholar 

  35. Lee JS (2006) Effects of soy protein and genistein on blood glucose, antioxidant enzyme activities, and lipid profile in streptozotocin-induced diabetic rats. Life Sci 79:1578–1584

    Article  CAS  PubMed  Google Scholar 

  36. Guo TL, Germolec DR, Zheng JF, Kooistra L, Auttachoat W, Smith MJ, White KL, Elmore SA (2014) Genistein protects female nonobese diabetic mice from developing type 1 diabetes when fed a soy- and alfalfa-free diet. Toxicol Pathol (Apr 8. [Epub ahead of print] PubMed PMID: 24713318)

  37. Behloul N, Wu G (2013) Genistein: a promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol 698:31–38

    Article  CAS  PubMed  Google Scholar 

  38. Nemoto O, Kawaguchi M, Yaoita H, Miyake K, Maehara K, Maruyama Y (2006) Left ventricular dysfunction and remodeling in streptozotocin-induced diabetic rats. Circ J 70:327–334

    Article  PubMed  Google Scholar 

  39. Van Linthout S, Spillmann F, Riad A, Trimpert C, Lievens J, Meloni M, Escher F, Filenberg E, Demir O, Li J, Shakibaei M, Schimke I, Staudt A, Felix SB, Schultheiss HP, De Geest B, Tschope C (2008) Human apolipoprotein A-I gene transfer reduces the development of experimental diabetic cardiomyopathy. Circulation 117:1563–1573

    Article  PubMed  Google Scholar 

  40. Sun D, Shen M, Li J, Li W, Zhang Y, Zhao L, Zhang Z, Yuan Y, Wang H, Cao F (2011) Cardioprotective effects of tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3b dependent pathway in experimental diabetic cardiomyopathy. Cardiovasc Diabetol 10:1–8

    Article  Google Scholar 

  41. Rajesh M, Mukhopadhyay P, Batkai S, Patel V, Saito K, Matsumoto S, Kashiwaya Y, Horvath B, Mukhopadhyay B, Becker L, Hasko G, Liaudet L, Wink DA, Veves A, Mechoulam R, Pacher P (2010) Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 56:2115–2125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Snell-Bergeon JK, West NA, Mayer-Davis EJ, Liese AD, Marcovina SM, D’Agostino RB Jr, Hamman RF, Dabelea D (2010) Inflammatory markers are increased in youth with type 1 diabetes: the SEARCH Case–control study. J Clin Endocrinol Metab 95:2868–2876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nian M, Lee P, Khaper N, Liu P (2004) Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res 94:1543–1553

    Article  CAS  PubMed  Google Scholar 

  44. Ji G, Yang Q, Hao J, Guo L, Chen X, Hu J, Leng L, Jiang Z (2011) Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int Immunopharmacol 6:762–768

    Article  Google Scholar 

  45. Deodato B, Altavilla D, Squadrito G, Campo GM, Arlotta M, Minutoli L, Saitta A, Cucinotta D, Calapai G, Caputi AP, Miano M, Squadrito F (1999) Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia-reperfusion injury. Br J Pharmacol 8:1683–1690

    Article  Google Scholar 

  46. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW, Richardson MA, Topper JN, Gimbrone MA Jr, Wrana JL, Falb D (1997) The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGF beta signaling. Cell 7:1165–1173

    Article  Google Scholar 

  47. Kim YS, Kim NH, Jung DH, Jang DS, Lee YM, Kim JM, Kim JS (2008) Genistein inhibits aldose reductase activity and high glucose-induced TGF-beta2 expression in human lens epithelial cells. Eur J Pharmacol 594:18–25

    Article  CAS  PubMed  Google Scholar 

  48. Kim H, Peterson TG, Barnes S (1998) Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor β signaling pathways1−3. Am J Clin Nutr 68:1418S–1425S

    CAS  PubMed  Google Scholar 

  49. Agarwal A, Nick HS (2000) Renal response to tissue injury: lessons from heme oxygenase-1 gene ablation and expression. J Am Soc Nephrol 5:965–973

    Google Scholar 

  50. Ryter SW, Kim HP, Nakahira K, Zuckerbraun BS, Morse D, Choi AM (2007) Protective functions of heme oxygenase-1 and carbon monoxide in the respiratory system. Antioxid Redox Signal 9:2157–2173

    Article  CAS  PubMed  Google Scholar 

  51. Grieve DJ, Byme JA, Cave AC, Shah AM (2004) Role of oxidative stress in cardiac remodeling after myocardial infarction. Heart Lung Circ 13:132–138

    Article  CAS  PubMed  Google Scholar 

  52. Kameda K, Matsunaga T, Abe N, Hanada H, Ishizaka H, Ono H, Saitoh M, Fukui K, Fukuda I, Osanai T, Okumura K (2003) Correlation of oxidative stress with activity of matrix metalloproteinase in patients with coronary artery disease: possible role for left ventricular remodeling. Eur Heart J 24:2180–2185

    Article  CAS  PubMed  Google Scholar 

  53. Molavi B, Mehta JL (2004) Oxidative stress in cardiovascular disease: molecular basis of its deleterious effects, its detection, and therapeutic considerations. Curr Opin Cardiol 19:488–493

    Article  PubMed  Google Scholar 

  54. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support provided by UKIERI and Department of Science and Technology (DST/INT/UK/P-39/2012), India is gratefully acknowledged. Facilities for electron microscopy availed at SAIF (DST), All India Institute of Medical Sciences, New Delhi, are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh K. Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K., Dongare, S., Mathur, R. et al. Genistein ameliorates cardiac inflammation and oxidative stress in streptozotocin-induced diabetic cardiomyopathy in rats. Mol Cell Biochem 408, 63–72 (2015). https://doi.org/10.1007/s11010-015-2483-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2483-2

Keywords

Navigation