Skip to main content
Log in

Overexpression of SYF2 correlates with enhanced cell growth and poor prognosis in human hepatocellular carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

SYF2, also known as p29/NTC31/CBPIN, encodes a nuclear protein that interacts with Cyclin D-type binding-protein 1. SYF2 has been reported to be involved in pre-mRNA splicing and cell cycle regulation. In the present study, we observed that SYF2 was obviously upregulated in HCC tumor tissues and cell lines, and its level was positively correlated with the tumor grade and Ki-67 expression, as well as poor prognosis of HCC. In vitro, using serum starvation–refeeding experiment, our results suggested that SYF2 was upregulated in proliferating HCC cells, and was positive correlated with the expression of PCNA and Cyclin D1. In addition, depletion of SYF2 decreased PCNA and Cyclin D1 levels. Accordingly, interference of SYF2 resulted in cells cycle arrest at G1/S phase in Huh7 HCC cells. Furthermore, we found that SYF2 might interact with Cyclin D1 and could confer doxorubicin resistance in HCC cells. These findings revealed that SYF2 might play a regulatory role in the proliferation of HCC cells. In summary, SYF2 may be a novel prognostic marker and serve as a potential therapeutic target in HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tsochatzis EA, Meyer T, Burroughs AK (2012) Hepatocellular carcinoma. N Engl J Med 366:92. doi:10.1056/NEJMc1112501#SA2 Author reply 92–3

    Article  CAS  PubMed  Google Scholar 

  2. Malek NP, Schmidt S, Huber P, Manns MP, Greten TF (2014) The diagnosis and treatment of hepatocellular carcinoma. Dtsch Arztebl Int 111:101–106. doi:10.3238/arztebl.2014.0101

    PubMed Central  PubMed  Google Scholar 

  3. Yang JD, Roberts LR (2010) Hepatocellular carcinoma: a global view. Nat Rev Gastroenterol Hepatol 7:448–458. doi:10.1038/nrgastro.2010.100

    Article  PubMed Central  PubMed  Google Scholar 

  4. Tashima Y, Hamada H, Okamoto M, Hanai T (2008) Prediction of key factor controlling G1/S phase in the mammalian cell cycle using system analysis. J Biosci Bioeng 106:368–374. doi:10.1263/jbb.106.368

    Article  CAS  PubMed  Google Scholar 

  5. Sherr CJ (1993) Mammalian G1 cyclins. Cell 73:1059–1065

    Article  CAS  PubMed  Google Scholar 

  6. Lu JW, Lin YM, Chang JG, Yeh KT, Chen RM, Tsai JJ, Su WW, Hu RM (2013) Clinical implications of deregulated CDK4 and Cyclin D1 expression in patients with human hepatocellular carcinoma. Med Oncol 30:379. doi:10.1007/s12032-012-0379-5

    Article  PubMed  Google Scholar 

  7. Chen CH, Chu PC, Lee L, Lien HW, Lin TL, Fan CC, Chi P, Huang CJ, Chang MS (2012) Disruption of murine mp29/Syf2/Ntc31 gene results in embryonic lethality with aberrant checkpoint response. PLoS ONE 7:e33538. doi:10.1371/journal.pone.0033538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ben-Yehuda S, Dix I, Russell CS, McGarvey M, Beggs JD, Kupiec M (2000) Genetic and physical interactions between factors involved in both cell cycle progression and pre-mRNA splicing in Saccharomyces cerevisiae. Genetics 156:1503–1517

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Chang MS, Chen CY, Yeh HI, Fan CC, Huang CJ, Yang YC (2002) Cloning, expression, and genomic organization of mouse mp29 gene. Biochem Biophys Res Commun 299:241–246

    Article  CAS  PubMed  Google Scholar 

  10. Chang MS, Chang CL, Huang CJ, Yang YC (2000) p29, a novel GCIP-interacting protein, localizes in the nucleus. Biochem Biophys Res Commun 279:732–737. doi:10.1006/bbrc.2000.3992

    Article  CAS  PubMed  Google Scholar 

  11. Chu PC, Yang YC, Lu YT, Chen HT, Yu LC, Chang MS (2006) Silencing of p29 affects DNA damage responses with UV irradiation. Cancer Res 66:8484–8491. doi:10.1158/0008-5472.CAN-05-3229

    Article  CAS  PubMed  Google Scholar 

  12. Chu PC, Wang TY, Lu YT, Chou CK, Yang YC, Chang MS (2009) Involvement of p29 in DNA damage responses and Fanconi anemia pathway. Carcinogenesis 30:1710–1716. doi:10.1093/carcin/bgp204

    Article  CAS  PubMed  Google Scholar 

  13. Dahan O, Kupiec M (2002) Mutations in genes of Saccharomyces cerevisiae encoding pre-mRNA splicing factors cause cell cycle arrest through activation of the spindle checkpoint. Nucleic Acids Res 30:4361–4370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Lu C, Liu G, Cui X, Zhang J, Wei L, Wang Y, Yang X, Liu Y, Cong X, Lv L, Ni R, Huang X (2014) Expression of SGTA correlates with prognosis and tumor cell proliferation in human hepatocellular carcinoma. Pathol Oncol Res 20:51–60. doi:10.1007/s12253-013-9657-6

    Article  CAS  PubMed  Google Scholar 

  15. Jiang D, Hu B, Wei L, Xiong Y, Wang G, Ni T, Zong C, Ni R, Lu C (2015) High expression of vacuolar protein sorting 4B (VPS4B) is associated with accelerated cell proliferation and poor prognosis in human hepatocellular carcinoma. Pathol Res Pract 211:240–247. doi:10.1016/j.prp.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  16. Wan C, Hou S, Ni R, Lv L, Ding Z, Huang X, Hang Q, He S, Wang Y, Cheng C, Gu XX, Xu G, Shen A (2015) MIF4G domain containing protein regulates cell cycle and hepatic carcinogenesis by antagonizing CDK2-dependent p27 stability. Oncogene 34:237–245. doi:10.1038/onc.2013.536

    Article  CAS  PubMed  Google Scholar 

  17. Ni W, Chen B, Zhou G, Lu C, Xiao M, Guan C, Zhang Y, He S, Shen A, Ni R (2013) Overexpressed nuclear BAG-1 in human hepatocellular carcinoma is associated with poor prognosis and resistance to doxorubicin. J Cell Biochem 114:2120–2130. doi:10.1002/jcb.24560

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Wang J, Zhong J, Deng Y, Xi Q, He S, Yang S, Jiang L, Huang M, Tang C, Liu R (2015) Ubiquitin-specific protease 14 (USP14) regulates cellular proliferation and apoptosis in epithelial ovarian cancer. Med Oncol 32:379. doi:10.1007/s12032-014-0379-8

    Article  CAS  PubMed  Google Scholar 

  19. Altekruse SF, Henley SJ, Cucinelli JE, McGlynn KA (2014) Changing hepatocellular carcinoma incidence and liver cancer mortality rates in the United States. Am J Gastroenterol 109:542–553. doi:10.1038/ajg.2014.11

    Article  PubMed Central  PubMed  Google Scholar 

  20. Fornaro L, Vivaldi C, Caparello C, Sacco R, Rotella V, Musettini G, Luchi S, Baldini EE, Falcone A, Masi G (2014) Dissecting signaling pathways in hepatocellular carcinoma: new perspectives in medical therapy. Future Oncol 10:285–304. doi:10.2217/fon.13.181

    Article  CAS  PubMed  Google Scholar 

  21. Ma W, Stafford LJ, Li D, Luo J, Li X, Ning G, Liu M (2007) GCIP/CCNDBP1, a helix-loop-helix protein, suppresses tumorigenesis. J Cell Biochem 100:1376–1386. doi:10.1002/jcb.21140

    Article  CAS  PubMed  Google Scholar 

  22. Guo J, Yang L, Huang J, Liu X, Qiu X, Tao T, Liu Y, He X, Ban N, Fan S, Sun G (2014) Knocking down the expression of SYF2 inhibits the proliferation of glioma cells. Med Oncol 31:101. doi:10.1007/s12032-014-0101-x

    Article  PubMed  Google Scholar 

  23. Zhu J, Ji L, Zhang J, Yang L, Guan C, Wang Y, Zhu J, Liang L, Ni R (2014) Upregulation of SYF2 in esophageal squamous cell carcinoma promotes tumor cell proliferation and predicts poor prognosis. Tumour Biol 35:10275–10285. doi:10.1007/s13277-014-2305-2

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Ni T, Xue Q, Lv L, Chen B, Cui X, Cui Y, Wang Y, Mao G, Ji L (2015) Involvement of p29/SYF2/fSAP29/NTC31 in the progression of NSCLC via modulating cell proliferation. Pathol Res Pract 211:36–42. doi:10.1016/j.prp.2014.07.013

    Article  CAS  PubMed  Google Scholar 

  25. Vincent K, Wang Q, Jay S, Hobbs K, Rymond BC (2003) Genetic interactions with CLF1 identify additional pre-mRNA splicing factors and a link between activators of yeast vesicular transport and splicing. Genetics 164:895–907

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Witzel II, Koh LF, Perkins ND (2010) Regulation of cyclin D1 gene expression. Biochem Soc Trans 38:217–222. doi:10.1042/BST0380217

    Article  CAS  PubMed  Google Scholar 

  27. Xu W, Cao M, Zheng H, Tan X, Li L, Cui G, Xu J, Cao J, Ke K, Wu Q (2014) Upregulation of SYF2 is associated with neuronal apoptosis caused by reactive astrogliosis to neuroinflammation. J Neurosci Res 92:318–328. doi:10.1002/jnr.23312

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81272708).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuihua Lu or Xiubing Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Shusen Zhang and Weidong Shi have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11010_2015_2533_MOESM1_ESM.tif

Figure S1 Western blot analysis cleaved caspase 9 expression in Huh7 cells that transfected with SYF2-siRNA#3 and control siRNA, meanwhile, with or without treatment of DOX. Supplementary material 1 (TIFF 1127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Shi, W., Chen, Y. et al. Overexpression of SYF2 correlates with enhanced cell growth and poor prognosis in human hepatocellular carcinoma. Mol Cell Biochem 410, 1–9 (2015). https://doi.org/10.1007/s11010-015-2533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-015-2533-9

Keywords

Navigation