Skip to main content
Log in

Inhibition of p90 ribosomal S6 kinase attenuates cell migration and proliferation of the human lung adenocarcinoma through phospho-GSK-3β and osteopontin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

p90 ribosomal S6 kinase (p90RSK) constitutes a family of serine/threonine kinases that have been shown to be involved in cell proliferation of various malignancies via direct or indirect effects on the cell-cycle machinery. We investigated the role of p90RSK in lung adenocarcinomas and whether the inhibition of p90RSK diminishes cancer progression. Moreover, we investigated the involvement of glycogen synthase kinase-3β (GSK-3β) and osteopontin (OPN) in the p90RSK-induced lung adenocarcinoma progression. p90RSK, OPN, and GSK-3β protein expressions were examined in the A549 human lung adenocarcinoma cell line in the presence and absence of BI-D1870 (BID), a p90RSK inhibitor. Gene expression of anti-apoptotic and pro-apoptotic markers namely Bcl2 and Bax, respectively, were studied by reverse transcription polymerase chain reaction. In addition, the A549 lung adenocarcinoma cell line was characterized for cell proliferation using the MTT assay and cell migration using the scratch migration assay. Our study revealed that total RSK1 protein expression is over expressed in the A549 human lung adenocarcinoma cell line, an effect which is significantly reduced upon pretreatment with BID (69.32 ± 12.41 % of control; P < 0.05). The inhibition of p90RSK also showed a significant suppression of cell proliferation (54.3 ± 6.73 % of control; P < 0.01) and cell migration (187.90 ± 16.10 % of control; P < 0.01). Treatment of the A549 cells with BID regressed the expression of Bcl2 mRNA (56.92 ± 6.07 % of control; P < 0.01). BID also regressed protein expression of OPN (79.57 ± 5.32 % of control; P < 0.05) and phospho-GSK-3β (73.04 ± 8.95 % of control; P < 0.05). The p90RSK has an essential role in promoting tumor growth and proliferation in non-small cell lung cancer (NSCLC). BID may serve as an alternative cancer treatment in NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

p90RSK:

p90 Ribosomal S6 kinase

GSK:

Glycogen synthase kinase

OPN:

Osteopontin

BID:

BI-D1870

NSCLC:

Non-small cell lung cancer

ERK:

Extracellular signal-regulated kinases

References

  1. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin. doi:10.3322/caac.21254

    Google Scholar 

  2. Plaimee P, Weerapreeyakul N, Barusrux S, Johns NP (2015) Melatonin potentiates cisplatin-induced apoptosis and cell cycle arrest in human lung adenocarcinoma cells. Cell Prolif 48:67–77. doi:10.1111/cpr.12158

    Article  CAS  PubMed  Google Scholar 

  3. Herbst RS, Heymach JV, Lippman SM (2008) Lung Cancer. N Engl J Med 359:1367–1380. doi:10.1056/NEJMra0802714

    Article  CAS  PubMed  Google Scholar 

  4. Larsen JE, Minna JD (2011) Molecular biology of lung cancer: clinical implications. Clin Chest Med 32:703–740. doi:10.1016/j.ccm.2011.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dela Cruz CS, Tanoue LT, Matthay RA (2011) Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med 32:605–644. doi:10.1016/j.ccm.2011.09.001

    Article  PubMed  Google Scholar 

  6. Panov SZ (2005) Molecular biology of the lung cancer. Radiol Oncol 39:197–210

    CAS  Google Scholar 

  7. Gridelli C, Bareschino MA, Schettino C, Rossi A, Maione P, Ciardiello F (2007) Erlotinib in non-small cell lung cancer treatment: current status and future development. Oncologist 12:840–849. doi:10.1634/theoncologist.12-7-840

    Article  CAS  PubMed  Google Scholar 

  8. Anjum R, Blenis J (2008) The RSK family of kinases: emerging roles in cellular signalling. Nat Rev Mol Cell Biol 9:747–758. doi:10.1038/nrm2509

    Article  CAS  PubMed  Google Scholar 

  9. Donati V, Boldrini L, Dell’Omodarme M, Prati MC, Faviana P, Camacci T, Lucchi M, Mussi A, Santoro M, Basolo F, Fontanini G (2005) Osteopontin expression and prognostic significance in non-small cell lung cancer. Clin Cancer Res 11:6459–6465. doi:10.1158/1078-0432.CCR-05-0541

    Article  CAS  PubMed  Google Scholar 

  10. Mishra R (2010) Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer 9:144. doi:10.1186/1476-4598-9-144

    Article  PubMed  PubMed Central  Google Scholar 

  11. Luo X, Ruhland MK, Pazolli E, Lind AC, Stewart SA (2011) Osteopontin stimulates preneoplastic cellular proliferation through activation of the MAPK pathway. Mol Cancer Res 9:1018–1029. doi:10.1158/1541-7786.MCR-10-0472

    Article  CAS  PubMed  Google Scholar 

  12. Lara R, Seckl MJ, Pardo OE (2013) The p90 RSK family members: common functions and isoform specificity. Cancer Res 73:5301–5308. doi:10.1158/0008-5472.CAN-12-4448

    Article  CAS  PubMed  Google Scholar 

  13. Zeng J, Liu D, Qiu Z, Huang Y, Chen B, Wang L, Xu H, Huang N, Liu L, Li W (2014) GSK3beta overexpression indicates poor prognosis and its inhibition reduces cell proliferation and survival of non-small cell lung cancer cells. Plos One 9:e91231. doi:10.1371/journal.pone.0091231

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aggarwal S, Kim SW, Ryu SH, Chung WC, Koo JS (2008) Growth suppression of lung cancer cells by targeting cyclic AMP response element-binding protein. Cancer Res 68:981–988. doi:10.1158/0008-5472.CAN-06-0249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12:397–408

    CAS  PubMed  Google Scholar 

  16. Rangaswami H, Bulbule A, Kundu GC (2006) Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16:79–87. doi:10.1016/j.tcb.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  17. Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, Shimada Y, Ari-i S, Wada H, Fujimoto J, Kohno M (1999) Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 18:813–822. doi:10.1038/sj.onc.1202367

    Article  CAS  PubMed  Google Scholar 

  18. Roux PP, Richards SA, Blenis J (2003) Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol Cell Biol 23:4796–4804. doi:10.1128/mcb.23.14.4796-4804.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lara R, Mauri FA, Taylor H, Derua R, Shia A, Gray C, Nicols A, Shiner RJ, Schofield E, Bates PA, Waelkens E, Dallman M, Lamb J, Zicha D, Downward J, Seckl MJ, Pardo OE (2011) An siRNA screen identifies RSK1 as a key modulator of lung cancer metastasis. Oncogene 30:3513–3521. doi:10.1038/onc.2011.61

    Article  CAS  PubMed  Google Scholar 

  20. Sapkota GP, Cummings L, Newell FS, Armstrong C, Bain J, Frodin M, Grauert M, Hoffmann M, Schnapp G, Steegmaier M, Cohen P, Alessi DR (2007) BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem J 401:29–38. doi:10.1042/BJ20061088

    Article  CAS  PubMed  Google Scholar 

  21. Sulzmaier FJ, Ramos JW (2013) RSK isoforms in cancer cell invasion and metastasis. Cancer Res 73:6099–6105. doi:10.1158/0008-5472.CAN-13-1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deng X (2014) Bcl2 family functions as signaling target in nicotine-/NNK-induced survival of human lung cancer cells. Scientifica 2014:215426. doi:10.1155/2014/215426

    Article  PubMed  PubMed Central  Google Scholar 

  23. Frame S, Cohen P (2001) GSK3 takes centre stage more than 20 years after its discovery. Biochem J 359:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shijubo N, Uede T, Kon S, Maeda M, Segawa T, Imada A, Hirasawa M, Abe S (1999) Vascular endothelial growth factor and osteopontin in stage I lung adenocarcinoma. Am J Respir Crit Care Med 160:1269–1273. doi:10.1164/ajrccm.160.4.9807094

    Article  CAS  PubMed  Google Scholar 

  25. Peng B, Wang YH, Huang Z, Feng SJ, Wang YS (2014) Prognostic significance of osteopontin in patients with lung cancer: a meta-analysis. Int J Clin Exp Med 7:4616–4626

    PubMed  PubMed Central  Google Scholar 

  26. Lucien F, Brochu-Gaudreau K, Arsenault D, Harper K, Dubois CM (2011) Hypoxia-induced invadopodia formation involves activation of NHE-1 by the p90 ribosomal S6 kinase (p90RSK). Plos One 6:e28851. doi:10.1371/journal.pone.0028851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA, Reshkin SJ (2013) Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs—an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. J Transl Med 11:282. doi:10.1186/1479-5876-11-282

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5:786–795. doi:10.1038/nrc1713

    Article  CAS  PubMed  Google Scholar 

  29. Li S, Bao P, Li Z, Ouyang H, Wu C, Qian G (2009) Inhibition of proliferation and apoptosis induced by a Na+/H+ exchanger-1 (NHE-1) antisense gene on drug-resistant human small cell lung cancer cells. Oncol Rep 21:1243–1249

    PubMed  Google Scholar 

  30. Amith SR, Fong S, Baksh S, Fliegel L (2015) Na(+)/H(+) exchange in the tumour microenvironment: does NHE1 drive breast cancer carcinogenesis? Int J Dev Biol 59:367–377. doi:10.1387/ijdb.140336lf

    Article  CAS  PubMed  Google Scholar 

  31. Amith SR, Wilkinson JM, Fliegel L (2016) Na+/H+ exchanger NHE1 regulation modulates metastatic potential and epithelial-mesenchymal transition of triple-negative breast cancer cells. Oncotarget. doi:10.18632/oncotarget.8520

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Qatar University Internal Grant (QU-UG2013/2014).

Author contribution

Nabeel Abdulrahman, Noufira Poomakkoth, Maiy Jaballa, Sadaf Riaz, Somaya Abdelaziz, and Aya Issa performed the research. Nabeel Abdulrahman, Noufira Poomakkoth, and Fatima Mraiche provided intellectual contributions and research assistance. Nabeel Abdulrahman and Fatima Mraiche contributed in the analysis of the data. Nabeel Abdulrahman, Noufira Poomakkoth, Maiy Jaballa and Fatima Mraiche wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Mraiche.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulrahman, N., Jaballah, M., Poomakkoth, N. et al. Inhibition of p90 ribosomal S6 kinase attenuates cell migration and proliferation of the human lung adenocarcinoma through phospho-GSK-3β and osteopontin. Mol Cell Biochem 418, 21–29 (2016). https://doi.org/10.1007/s11010-016-2727-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2727-9

Keywords

Navigation