Skip to main content
Log in

Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is characterized by high levels of nonesterified fatty acids (NEFA), inflammation, and hepatic steatosis. Inflammation plays a crucial role in the development of fatty liver. Resveratrol (RSV) supplement could improve inflammatory response and hepatic steatosis, whereas the underlying mechanism was not well understood. In this study, mice fed with high-fat diet (HFD) exhibited severe hepatic injury and high blood concentrations of the inflammatory cytokines TNF-α, IL-6, and IL-1β. Hepatic NF-κB inflammatory pathway was over-induced in HFD mice. In vitro, NEFA treatment further increased NF-κB pathway activation in mice hepatocytes, which then promoted the synthesis of inflammatory cytokines. Interestingly, RSV treatment significantly inhibited overactivation of NF-κB pathway and improved hepatic steatosis. Furthermore, RSV further increased the AMP-activated protein kinaseα (AMPKα) phosphorylation and sirtuin1 (SIRT1) protein levels to inhibit overactivation of NF-κB pathway induced by HFD or high levels of NEFA. AMPKα or SIRT1 inhibition significantly decreased the improvement effect of RSV on the NF-κB pathway induced by high levels of NEFA. Taken together, these findings indicate that RSV supplement decreases the inflammatory level and improves hepatic steatosis through activating AMPKα-SIRT1 pathway. Therefore, these data suggested an important clinical application of RSV in preventing NAFLD in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mendez-Sanchez N, Arrese M, Zamora-Valdes D, Uribe M (2007) Current concepts in the pathogenesis of nonalcoholic fatty liver disease. Liver Int. 27:423–433

    Article  CAS  PubMed  Google Scholar 

  2. Su YM, Lv GR, Xie JX, Wang ZH, Lin HT (2013) Maternal hypoxia increases the susceptibility of adult rat male offspring to HFD-induced non-alcoholic fatty liver disease. Endocrinology 154:4377–4387

    Article  CAS  PubMed  Google Scholar 

  3. Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:852–858

    Article  Google Scholar 

  4. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846

    Article  CAS  PubMed  Google Scholar 

  5. Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, metabolic disease. Cell Metab. 13:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gruben N, Shiri-Sverdlov R, Koonen DPY, Hofker MH (2014) Nonalcoholic fatty liver disease: a main driver of insulin resistance or a dangerous liaison? BBA Mol Basis Dis. 1842:2329–2343

    Article  CAS  Google Scholar 

  7. Baffy G (2009) Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J Hepatol 51:212–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miura K, Seki E, Ohnishi H, Brenner DA (2010) Role of toll-like receptors and their downstream molecules in the development of nonalcoholic fatty liver disease. Gastroenterol Res Pract. Article ID: 362847

  9. Poulsen MM, Larsen JØ, Hamilton-Dutoit S, Clasen BF, Jessen N, Paulsen SK (2012) Resveratrol up-regulates hepatic uncoupling protein 2 and prevents development of nonalcoholic fatty liver disease in rats fed a HFD. Nutr Res. 32:701–708

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Huang W, Gu J, Du X, Lei L, Yuan X (2015) SREBP-1c overactivates ROS-mediated hepatic NF-κB inflammatory pathway in dairy cows with fatty liver. Cell Signal 27:2099–2109

    Article  CAS  PubMed  Google Scholar 

  11. Shi X, Li D, Deng Q, Li Y, Sun G, Yuan X (2015) NEFAs activate the oxidative stress-mediated NF-kB signaling pathway to induce inflammatory response in calf hepatocytes. J Steroid Biochem Mol Biol 145:103–112

    Article  CAS  PubMed  Google Scholar 

  12. Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115–128

    Article  CAS  PubMed  Google Scholar 

  13. Labbé A, Garand C, Cogger VC, Paquet ER, Desbiens M, Le Couteur DG (2011) Resveratrol improves insulin resistance hyperglycemia and hepatosteatosis but not hypertriglyceridemia, inflammation, and life span in a mouse model for Werner syndrome. J Gerontol A Biol Sci Med Sci 66:264–278

    Article  PubMed  Google Scholar 

  14. Chávez E, Reyes-Gordillo K, Segovia J, Shibayama M, Tsutsumi V, Vergara P et al (2008) Resveratrol prevents fibrosis, NF-kappaB activation and TGF-beta increases induced by chronic CCl4 treatment in rats. J Appl Toxicol 28:35–43

    Article  PubMed  Google Scholar 

  15. Andrade JM, Paraíso AF, de Oliveira MV, Martins AM, Neto JF, Guimarães AL et al (2014) Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 30:915–919

    Article  CAS  PubMed  Google Scholar 

  16. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  CAS  PubMed  Google Scholar 

  17. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ (2012) SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab 15:675–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hou X, Xu S, Maitland-Toolan KA, Sato K, Jiang B, Ido Y (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283:20015–20026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen Z, Liang X, Rogers CQ, Rideout D, You M (2010) Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 298:364–374

    Article  Google Scholar 

  21. Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP (2013) Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 141:1530–1535

    Article  CAS  PubMed  Google Scholar 

  22. Klaunig JE (1981) Mouse liver cell cultureI. I. Hepatocyte isolation. In Vitro 17:913–925

    Article  CAS  PubMed  Google Scholar 

  23. Yin Z, Ellis EC, Nowak G (2007) Isolation of mouse hepatocytes for transplantation: a comparison between antegrade and retrograde liver perfusion. Cell Transplant 16:859–865

    Article  PubMed  Google Scholar 

  24. Murray AJ, Panagia M, Hauton D, Gibbons GF, Clarke K (2005) Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes 54:3496–3502

    Article  CAS  PubMed  Google Scholar 

  25. Li X, Li X, Chen H, Lei L, Liu J, Guan Y (2013) Non-esterified fatty acids activate the amp-activated protein kinase signaling pathway to regulate lipid metabolism in bovine hepatocytes. Cell Biochem Biophys 67:1157–1169

    Article  CAS  PubMed  Google Scholar 

  26. Suganami T, Tanimoto-Koyama K, Nishida J, Itoh M, Yuan X, Mizuarai S (2007) Role of the Toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 27:84–91

    Article  CAS  PubMed  Google Scholar 

  27. Long Y, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest. 116:1776–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guclu A, Erdur FM, Turkmen K (2015) The emerging role of sirtuin 1 in cellular metabolism diabetes mellitus, diabetic kidney disease and hypertension. Exp Clin Endocrinol Diabetes. doi:10.1055/s-0035-1565067

    PubMed  Google Scholar 

  29. Zhang Y, Chen ML, Zhou Y, Yi L, Gao YX, Ran L (2015) Resveratrol improves hepatic steatosis by inducing autophagy through the cAMP signaling pathway. Mol Nutr Food Res 59:1443–1457

    Article  CAS  PubMed  Google Scholar 

  30. Birkenfeld AL, Shulman GI (2014) Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 59:713–723

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest. 121:2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Diraison F, Moulin P, Beylot M (2003) Contribution of hepatic de novo lipogenesis and reesterification of plasma non-esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 29:478–485

    Article  CAS  PubMed  Google Scholar 

  33. Zhou LK, Xu L, Ye J, Li D, Wang WS, Li XH et al (2012) Cidea promotes hepatic steatosis by sensing dietary fatty acids. Hepatology 56:95–107

    Article  CAS  PubMed  Google Scholar 

  34. Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 114:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sánchez-Fidalgo S, Cárdeno A, Villegas I, Talero E, de la Lastra CA (2010) Dietary supplementation of resveratrol attenuates chronic colonic inflammation in mice. Eur J Pharmacol 633:78–84

    Article  PubMed  Google Scholar 

  36. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ahn J, Cho I, Kim S, Kwon D, Ha T (2008) Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J Hepatol 49:1019–1028

    Article  CAS  PubMed  Google Scholar 

  38. Wang GL, Fu YC, Xu WC, Feng YQ, Fang SR, Zhou XH (2009) Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway. Biochem Biophys Res Commun. 380:644–649

    Article  CAS  PubMed  Google Scholar 

  39. Chen S, Zhao X, Ran L, Wan J, Wang X, Qin Y, Shu F, Gao Y, Yuan L, Zhang Q, Mi M (2015) Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig Liver Dis. 47:226–232

    Article  CAS  PubMed  Google Scholar 

  40. Faghihzadeh F, Adibi P, Rafiei R, Hekmatdoost A (2014) Resveratrol supplementation improves inflammatory biomarkers in patients with nonalcoholic fattyliver disease. Nutr Res. 34(10):837–843

    Article  CAS  PubMed  Google Scholar 

  41. Heebøll S, Kreuzfeldt M, Hamilton-Dutoit S, Kjær Poulsen M, Stødkilde-Jørgensen H, Møller HJ, Jessen N, Thorsen K, Kristina Hellberg Y, Bønløkke Pedersen S, Grønbæk H (2016) Placebo-controlled, randomised clinical trial: high-dose resveratrol treatment for non-alcoholic fatty liver disease. Scand J Gastroenterol 51:456–464

    Article  PubMed  Google Scholar 

  42. Chachay VS, Macdonald GA, Martin JH, Whitehead JP, O’Moore-Sullivan TM, Lee P, Franklin M, Klein K, Taylor PJ, Ferguson M, Coombes JS, Thomas GP, Cowin GJ, Kirkpatrick CM, Prins JB, Hickman IJ (2014) Resveratrol does not benefit patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 12(12):2092–2103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfu Li.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Ma, J., Wang, W. et al. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver. Mol Cell Biochem 422, 75–84 (2016). https://doi.org/10.1007/s11010-016-2807-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-016-2807-x

Keywords

Navigation