Skip to main content
Log in

Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Thymic stromal lymphopoietin (TSLP) has recently been implicated as a key molecule for initiating allergic rhinitis (AR) at the cell-dendritic cell (DC) interface. Previous studies demonstrated that TSLP activated DCs to express more OX40 ligand (OX40L), which is associated with the initiation of T helper type 2 (Th2) cell responses. STAT phosphorylation has been reported to be promoted by TSLP. Thus, we investigated if the JAK/STAT pathway inhibitor CYT387 could affect TSLP-DC-mediated Th2 cell response in naive T cell and AR mice model. Western blot showed that the levels of phosphorylated JAK1, JAK2, STAT1, STAT3, and STAT5 were increased in TSLP-DCs, which can be offset by CYT387. Flow cytometry indicated that CYT387 had obviously down-regulated the surface maturation co-stimulatory molecules (CD11c, CD80, CD86, and MHCII) in DCs, which were increased by TSLP. Moreover, CYT387 markedly reduced the ability of TSLP-DCs to promote the differentiation of naive CD4+ T cells into IL-4-expressing Th2 cells. The histological examination showed that the CYT387-treated group showed less epithelial disruption, epithelial cell proliferation, and reduced eosinophil infiltration compared with AR group. Western blot and RT-PCR demonstrated that the expression of OX40L was increased in AR mice, but that it was decreased by CYT387. Furthermore, CYT387 treatment resulted in the reduction of IL-4 and IL-5 expression and increased IFN-γ level in AR mice, which was consistent with the levels of intracellular cytokine in Th2 cell. In conclusion, we suggest that blockading the JAK/STAT pathway restrains inflammatory Th2 cell response induced by TSLP-DCs in AR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Liu Y, Lu X, Yu HJ et al (2010) The expression of osteopontin and its association with Clara cell 10 kDa protein in allergic rhinitis. Clin Exp Allergy 40:1632–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meltzer EO, Blaiss MS, Derebery MJ et al (2009) Burden of allergic rhinitis: results from the Pediatric Allergies in America survey. J Allergy Clin Immunol 124:S43–S70

    Article  PubMed  Google Scholar 

  3. Brozek JL, Bousquet J, Baena-Cagnani CE et al (2010) Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol 126:466–476

    Article  PubMed  Google Scholar 

  4. Al-Shami A, Spolski R, Kelly J et al (2005) A role for TSLP in the development of inflammation in an asthma model. J Exp Med 202:829–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gauvreau GM, O’Byrne PM, Boulet LP et al (2014) Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med 370:2102–2110

    Article  PubMed  Google Scholar 

  6. Gao PS, Rafaels NM, Mu D et al (2010) Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol 125(1403–1407):e1404

    Google Scholar 

  7. Mou Z, Xia J, Tan Y et al (2009) Overexpression of thymic stromal lymphopoietin in allergic rhinitis. Acta Otolaryngol 129:297–301

    Article  CAS  PubMed  Google Scholar 

  8. Akasaki S, Matsushita K, Kato Y et al (2016) Murine allergic rhinitis and nasal Th2 activation are mediated via TSLP- and IL-33-signaling pathways. Int Immunol 28:65–76

    CAS  PubMed  Google Scholar 

  9. Salazar F, Ghaemmaghami AM (2013) Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells. Front Immunol 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  10. Radulovic S, Calderon MA, Wilson D et al (2010) Sublingual immunotherapy for allergic rhinitis. Cochrane Database Syst Rev 12:CD002893

    Google Scholar 

  11. Ito T, Wang YH, Duramad O et al (2005) TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 202:1213–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Q, Du J, Zhu J et al (2015) Thymic stromal lymphopoietin signaling in CD4(+) T cells is required for TH2 memory. J Allergy Clin Immunol 135(781–791):e783

    Google Scholar 

  13. Burrows KE, Dumont C, Thompson CL et al (2015) OX40 blockade inhibits house dust mite driven allergic lung inflammation in mice and in vitro allergic responses in humans. Eur J Immunol 45:1116–1128

    Article  CAS  PubMed  Google Scholar 

  14. Liu YJ (2007) Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation. J Allergy Clin Immunol 120:238–244 (quiz 245–236)

    Article  CAS  PubMed  Google Scholar 

  15. Seshasayee D, Lee WP, Zhou M et al (2007) In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J Clin Invest 117:3868–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Zhou B (2012) Functions of thymic stromal lymphopoietin in immunity and disease. Immunol Res 52:211–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ziegler SF (2010) The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Curr Opin Immunol 22:795–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ying S, O’Connor B, Ratoff J et al (2005) Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol 174:8183–8190

    Article  CAS  PubMed  Google Scholar 

  19. Ren X, Wang L, Wu X (2016) A potential link between TSLP/TSLPR/STAT5 and TLR2/MyD88/NFkappaB-p65 in human corneal epithelial cells for Aspergillus fumigatus tolerance. Mol Immunol 71:98–106

    Article  CAS  PubMed  Google Scholar 

  20. Takai T, Chen X, Xie Y et al (2014) TSLP expression induced via Toll-like receptor pathways in human keratinocytes. Methods Enzymol 535:371–387

    Article  CAS  PubMed  Google Scholar 

  21. Wohlmann A, Sebastian K, Borowski A et al (2010) Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function. Biol Chem 391:181–186

    Article  CAS  PubMed  Google Scholar 

  22. Reche PA, Soumelis V, Gorman DM et al (2001) Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 167:336–343

    Article  CAS  PubMed  Google Scholar 

  23. Rochman Y, Kashyap M, Robinson GW et al (2010) Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling. Proc Natl Acad Sci USA 107:19455–19460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roney K (2013) Bone marrow-derived dendritic cells. Methods Mol Biol 1031:71–76

    Article  CAS  PubMed  Google Scholar 

  25. Fu RH, Wang YC, Liu SP et al (2014) Dryocrassin suppresses immunostimulatory function of dendritic cells and prolongs skin allograft survival. Cell Transplant 23:641–656

    Article  PubMed  Google Scholar 

  26. Lowe B, Avila HA, Bloom FR et al (2003) Quantitation of gene expression in neural precursors by reverse-transcription polymerase chain reaction using self-quenched, fluorogenic primers. Anal Biochem 315:95–105

    Article  CAS  PubMed  Google Scholar 

  27. Asher MI, Montefort S, Bjorksten B et al (2006) Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. The Lancet 368:733–743

    Article  Google Scholar 

  28. Ren JJ, Yu Z, Yang FL et al (2015) Effects of bifidobacterium breve feeding strategy and delivery modes on experimental Allergic Rhinitis mice. PLoS One 10:e0140018

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhu DD, Zhu XW, Jiang XD et al (2009) Thymic stromal lymphopoietin expression is increased in nasal epithelial cells of patients with mugwort pollen sensitive-seasonal allergic rhinitis. Chin Med J 122:2303–2307

    PubMed  Google Scholar 

  30. Akbari O, Freeman GJ, Meyer EH et al (2002) Antigen-specific regulatory T cells develop via the ICOS-ICOS-ligand pathway and inhibit allergen-induced airway hyperreactivity. Nat Med 8:1024–1032

    Article  CAS  PubMed  Google Scholar 

  31. de Lastic AL, Rodi M, Mouzaki A (2016) Effect of dendritic cell state and antigen-presentation conditions on resulting T-cell phenotypes and Th cytokine profiles. Immunobiology 221:862–870

    Article  PubMed  Google Scholar 

  32. Arima K, Watanabe N, Hanabuchi S et al (2010) Distinct signal codes generate dendritic cell functional plasticity. Sci Signal 3:ra4

    Article  PubMed  PubMed Central  Google Scholar 

  33. Quentmeier H, Drexler HG, Fleckenstein D et al (2001) Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15:1286–1292

    Article  CAS  PubMed  Google Scholar 

  34. Liu YJ (2001) Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106:259–262

    Article  CAS  PubMed  Google Scholar 

  35. Marten A, Greten T, Ziske C et al (2002) Generation of activated and antigen-specific T cells with cytotoxic activity after co-culture with dendritic cells. Cancer Immunol Immunother 51:25–32

    Article  CAS  PubMed  Google Scholar 

  36. Mansilla FC, Quintana ME, Langellotti C et al (2016) Immunization with Neospora caninum profilin induces limited protection and a regulatory T-cell response in mice. Exp Parasitol 160:1–10

    Article  CAS  PubMed  Google Scholar 

  37. Zheng Y, Manzotti CN, Liu M et al (2004) CD86 and CD80 differentially modulate the suppressive function of human regulatory T cells. J Immunol 172:2778–2784

    Article  CAS  PubMed  Google Scholar 

  38. Lim TS, Goh JK, Mortellaro A et al (2012) CD80 and CD86 differentially regulate mechanical interactions of T-cells with antigen-presenting dendritic cells and B-cells. PLoS One 7:e45185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Soumelis V, Reche PA, Kanzler H et al (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3:673–680

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez-Rey E, Fernandez-Martin A, Chorny A et al (2006) Therapeutic effect of vasoactive intestinal peptide on experimental autoimmune encephalomyelitis: down-regulation of inflammatory and autoimmune responses. Am J Pathol 168:1179–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 81300808, 81200731, 81470031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Qiao.

Ethics declarations

Conflict of interest

None.

Additional information

Zhaohui Shi and Weihong Jiang have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Jiang, W., Wang, M. et al. Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis. Mol Cell Biochem 430, 161–169 (2017). https://doi.org/10.1007/s11010-017-2963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-2963-7

Keywords

Navigation