Skip to main content
Log in

HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Sustained cardiac hypertrophy (CH) is related to a variety of physiological as well as pathological stimuli and eventually increases the risk of heart failure. HOTAIR has been identified as a competing endogenous RNA in multiple human biological processes. Whether lncRNA-HOTAIR is involved in the progress of CH and how it works still remain unknown. Herein, we found that HOTAIR was down-regulated, while miR-19 was up-regulated in both heart tissues from TAC-operated mice in vivo and cultural cardiomyocytes treated with Ang-II in vitro by real-time PCR. Meanwhile, HOTAIR expression was negatively correlated with miR-19 in TAC-operated mice. HOTAIR overexpression reduced cell surface area and the expression of hypertrophic markers ANP, BNP, and β-MHC in response to Ang-II stimulation as well as knockdown of miR-19. The further molecular mechanisms of HOTAIR action in CH demonstrated that HOTAIR may act as a competing endogenous RNA (ceRNA) for miR-19, thereby modulating the dis-inhibition of its endogenous target PTEN and playing an important role in inhibiting CH progress. These findings reveal a novel function of LncRNAs, which conduce to an extensive understanding of CH and provide novel research directions and therapeutic options for treating this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balakumar P, Jagadeesh G (2010) Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared? Pharmacol Res 62:365–383. doi:10.1016/j.phrs.2010.07.003

    Article  CAS  PubMed  Google Scholar 

  2. Creemers EE, Wilde AA, Pinto YM (2011) Heart failure: advances through genomics. Nat Rev Genet 12:357–362. doi:10.1038/nrg2983

    Article  CAS  PubMed  Google Scholar 

  3. Bell D, Campbell M, Wang X, Earle JA, Cosby SL, McDermott BJ (2010) Adrenomedullin gene delivery is cardio-protective in a model of chronic nitric oxide deficiency combining pressure overload, oxidative stress and cardiomyocyte hypertrophy. Cell Physiol Biochem 26:383–394. doi:10.1159/000320562

    Article  CAS  PubMed  Google Scholar 

  4. Willis MS, Ike C, Li L, Wang DZ, Glass DJ, Patterson C (2007) Muscle ring finger 1, but not muscle ring finger 2, regulates cardiac hypertrophy in vivo. Circ Res 100:456–459. doi:10.1161/01.RES.0000259559.48597.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65:45–79. doi:10.1146/annurev.physiol.65.092101.142243

    Article  CAS  PubMed  Google Scholar 

  6. Da Sacco L, Baldassarre A, Masotti A (2012) Bioinformatics tools and novel challenges in long non-coding RNAs (lncRNAs) functional analysis. Int J Mol Sci 13:97–114. doi:10.3390/ijms13010097

    Article  CAS  PubMed  Google Scholar 

  7. Shang D, Yang H, Xu Y, Yao Q, Zhou W, Shi X, Han J, Su F, Su B, Zhang C, Li C, Li X (2015) A global view of network of lncRNAs and their binding proteins. Mol Biosyst 11:656–663. doi:10.1039/c4mb00409d

    Article  CAS  PubMed  Google Scholar 

  8. Han P, Li W, Lin CH, Yang J, Shang C, Nurnberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien HC, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HS, Quertermous T, Chang CP (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514:102–106. doi:10.1038/nature13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grote P, Wittler L, Hendrix D, Koch F, Wahrisch S, Beisaw A, Macura K, Blass G, Kellis M, Werber M, Herrmann BG (2013) The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell 24:206–214. doi:10.1016/j.devcel.2012.12.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn GW 2nd (2014) Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci USA 111:12264–12269. doi:10.1073/pnas.1410622111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio LA (2010) Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature 464:409–412. doi:10.1038/nature08801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146:353–358. doi:10.1016/j.cell.2011.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Song C, Zhang J, Liu Y, Pan H, Qi HP, Cao YG, Zhao JM, Li S, Guo J, Sun HL, Li CQ (2016) Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy. Oncotarget 7:10827–10840. doi:10.18632/oncotarget.7312

    Article  PubMed  PubMed Central  Google Scholar 

  14. Greco S, Zaccagnini G, Perfetti A, Fuschi P, Valaperta R, Voellenkle C, Castelvecchio S, Gaetano C, Finato N, Beltrami AP, Menicanti L, Martelli F (2016) Long noncoding RNA dysregulation in ischemic heart failure. J Transl Med 14:183. doi:10.1186/s12967-016-0926-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z, Cheng J, Wu Y, Qiu J, Sun Y, Tong X (2016) LncRNA HOTAIR controls the expression of Rab22a by sponging miR-373 in ovarian cancer. Mol Med Rep 14:2465–2472. doi:10.3892/mmr.2016.5572

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, Kong R, Xia R, Lu KH, Li JH, De W, Wang KM, Wang ZX (2014) Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 13:92. doi:10.1186/1476-4598-13-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thum T, Condorelli G (2015) Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. Circ Res 116:751–762. doi:10.1161/CIRCRESAHA.116.303549

    Article  CAS  PubMed  Google Scholar 

  18. Wu H, Liu J, Li W, Liu G, Li Z (2016) LncRNA-HOTAIR promotes TNF-alpha production in cardiomyocytes of LPS-induced sepsis mice by activating NF-kappaB pathway. Biochem Biophys Res Commun 471:240–246. doi:10.1016/j.bbrc.2016.01.117

    Article  CAS  PubMed  Google Scholar 

  19. Jiang F, Zhou X, Huang J (2016) Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy. PLoS One 11:e0152767. doi:10.1371/journal.pone.0152767

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang K, Lin ZQ, Long B, Li JH, Zhou J, Li PF (2012) Cardiac hypertrophy is positively regulated by MicroRNA miR-23a. J Biol Chem 287:589–599. doi:10.1074/jbc.M111.266940

    Article  CAS  PubMed  Google Scholar 

  21. Chen H, Wang X, Tong M, Wu D, Wu S, Chen J, Kang Y, Tang H, Tang C, Jiang W (2013) Intermedin suppresses pressure overload cardiac hypertrophy through activation of autophagy. PLoS One 8:e64757. doi:10.1371/journal.pone.0064757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114:1377–1388. doi:10.1161/CIRCRESAHA.114.302476

    Article  CAS  PubMed  Google Scholar 

  23. Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW (2012) Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J Cell Physiol 227:1391–1398. doi:10.1002/jcp.22852

    Article  CAS  PubMed  Google Scholar 

  24. Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260. doi:10.1093/cvr/cvp014

    Article  CAS  PubMed  Google Scholar 

  25. Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacol Res 61:269–280. doi:10.1016/j.phrs.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  26. Papait R, Kunderfranco P, Stirparo GG, Latronico MV, Condorelli G (2013) Long noncoding RNA: a new player of heart failure? J Cardiovasc Transl Res 6:876–883. doi:10.1007/s12265-013-9488-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111:56–65. doi:10.1093/cvr/cvw078

    Article  CAS  PubMed  Google Scholar 

  28. Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, White EJ, Orjalo AV, Rinn JL, Kreft SG, Wilson GM, Gorospe M (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:2939. doi:10.1038/ncomms3939

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yu H, Lindsay J, Feng ZP, Frankenberg S, Hu Y, Carone D, Shaw G, Pask AJ, O’Neill R, Papenfuss AT, Renfree MB (2012) Evolution of coding and non-coding genes in HOX clusters of a marsupial. BMC Genom 13:251. doi:10.1186/1471-2164-13-251

    Article  CAS  Google Scholar 

  30. Danielson LS, Park DS, Rotllan N, Chamorro-Jorganes A, Guijarro MV, Fernandez-Hernando C, Fishman GI, Phoon CK, Hernando E (2013) Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J 27:1460–1467. doi:10.1096/fj.12-221994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng HY, Rybin VO, Lembo G, Fratta L, Oliveira-dos-Santos AJ, Benovic JL, Kahn CR, Izumo S, Steinberg SF, Wymann MP, Backx PH, Penninger JM (2002) Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110:737–749

    Article  CAS  PubMed  Google Scholar 

  32. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471. doi:10.1016/j.yjmcc.2004.05.015

    Article  CAS  PubMed  Google Scholar 

  33. Ravi Y, Selvendiran K, Naidu SK, Meduru S, Citro LA, Bognar B, Khan M, Kalai T, Hideg K, Kuppusamy P, Sai-Sudhakar CB (2013) Pulmonary hypertension secondary to left-heart failure involves peroxynitrite-induced downregulation of PTEN in the lung. Hypertension 61:593–601. doi:10.1161/HYPERTENSIONAHA.111.00514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ravi Y, Selvendiran K, Meduru S, Citro L, Naidu S, Khan M, Rivera BK, Sai-Sudhakar CB, Kuppusamy P (2013) Dysregulation of PTEN in cardiopulmonary vascular remodeling induced by pulmonary hypertension. Cell Biochem Biophys 67:363–372. doi:10.1007/s12013-011-9332-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Ma.

Additional information

Yanjun Lai and Shuai He have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., He, S., Ma, L. et al. HOTAIR functions as a competing endogenous RNA to regulate PTEN expression by inhibiting miR-19 in cardiac hypertrophy. Mol Cell Biochem 432, 179–187 (2017). https://doi.org/10.1007/s11010-017-3008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3008-y

Keywords

Navigation