Skip to main content

Advertisement

Log in

Molecular and functional diversity of vascular endothelial growth factors

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

Members of the vascular endothelial growth factor (VEGF) family are crucial regulators of neovascularization and are classified as cystine knot growth factors that specifically bind cellular receptor tyrosine kinases VEGFR-1, VEGFR-2, and VEGFR-3 with high but variable affinity and selectivity. The VEGF family has recently been expanded and currently comprises seven members: VEGF-A, VEGF-B, placenta growth factor (PlGF), VEGF-C, VEGF-D, viral VEGF (also known as VEGF-E), and snake venom VEGF (also known as VEGF-F). Although all members are structurally homologous, there is molecular diversity among the subtypes, and several isoforms, such as VEGF-A, VEGF-B, and PlGF, are generated by alternative exon splicing. These splicing isoforms exhibit differing properties, particularly in binding to co-receptor neuropilins and heparin. VEGF family proteins play multiple physiological roles, such as angiogenesis and lymphangiogenesis, while exogenous members (viral and snake venom VEGFs) display activities that are unique in physiology and function. This review will highlight the molecular and functional diversity of VEGF family proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HF:

hypotensive factor

HIF:

hypoxia-inducible factor

ICPP:

increasing capillary permeability protein

NP:

neuropilin

PlGF:

placenta growth factor

RTK:

receptor tyrosine kinase

svVEGF:

snake venom vascular endothelial growth factor

VEGF:

vascular endothelial growth factor

VEGFR:

VEGF receptor

References

  1. Risau, W. and Flamme, I., Vasculogenesis, Annu. Rev. Cell Dev. Biol., 11 (1995) 73–91.

    CAS  Google Scholar 

  2. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G. and Isner, J.M., Isolation of putative progenitor endothelial cells for angiogenesis, Science, 275 (1997) 964–967.

    CAS  Google Scholar 

  3. He, Y., Rajantie, I., Ilmonen, M., Makinen, T., Karkkainen, M.J., Haiko, P., Salven, P. and Alitalo, K., Preexisting lymphatic endothelium but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis, Cancer Res., 64 (2004) 3737–3740.

    CAS  Google Scholar 

  4. Gothert, J.R., Gustin, S.E., van Eekelen, J.A., Schmidt, U., Hall, M.A., Jane, S.M., Green, A.R., Gottgens, B., Izon, D.J. and Begley, C.G., Genetically tagging endothelial cells in vivo: Bone marrow-derived cells do not contribute to tumor endothelium, Blood, 104 (2004) 1769–1777.

    Google Scholar 

  5. Risau, W., Mechanisms of angiogenesis, Nature, 386 (1997) 671–674.

    CAS  Google Scholar 

  6. Folkman, J., Angiogenesis in cancer, vascular, rheumatoid and other disease, Nat. Med., 1 (1995) 27–31.

    CAS  Google Scholar 

  7. Nisato, R.E., Tille, J.C. and Pepper, M.S., Lymphangiogenesis and tumor metastasis, Thromb Haemost, 90 (2003) 591–597.

    CAS  Google Scholar 

  8. Stacker, S.A., Williams, R.A. and Achen, M.G., Lymphangiogenic growth factors as markers of tumor metastasis, APMIS, 112 (2004) 539–549.

    CAS  Google Scholar 

  9. Achen, M.G., McColl, B.K. and Stacker, S.A., Focus on lymphangiogenesis in tumor metastasis, Cancer Cell, 7 (2005) 121–127.

    CAS  Google Scholar 

  10. Tammela, T., Petrova, T.V. and Alitalo, K., Molecular lymphangiogenesis: New players, Trends Cell Biol., 15 (2005) 434–441.

    CAS  Google Scholar 

  11. Ferrara, N., Vascular endothelial growth factor: Basic science and clinical progress, Endocr Rev., 25 (2004) 581–611.

    CAS  Google Scholar 

  12. McColl, B.K., Stacker, S.A. and Achen, M.G., Molecular regulation of the VEGF family – inducers of angiogenesis and lymphangiogenesis, APMIS, 112 (2004) 463–480.

    CAS  Google Scholar 

  13. Tammela, T., Enholm, B., Alitalo, K. and Paavonen, K., The biology of vascular endothelial growth factors, Cardiovasc Res., 65 (2005) 550–563.

    CAS  Google Scholar 

  14. Takahashi, H. and Shibuya, M., The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions, Clin. Sci. (Lond), 109 (2005) 227–241.

    Article  CAS  Google Scholar 

  15. Cross, M.J., Dixelius, J., Matsumoto, T. and Claesson-Welsh, L., VEGF-receptor signal transduction, Trends Biochem. Sci., 28 (2003) 488–494.

    CAS  Google Scholar 

  16. Neufeld, G., Cohen, T., Gengrinovitch, S. and Poltorak, Z., Vascular endothelial growth factor (VEGF) and its receptors, FASEB J., 13 (1999) 9–22.

    CAS  Google Scholar 

  17. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J. and Holash, J., Vascular-specific growth factors and blood vessel formation, Nature, 407 (2000) 242–248.

    CAS  Google Scholar 

  18. Carmeliet, P., Angiogenesis in health and disease, Nat. Med., 9 (2003) 653–660.

    CAS  Google Scholar 

  19. Jain, R.K., Molecular regulation of vessel maturation, Nat. Med., 9 (2003) 685–693.

    CAS  Google Scholar 

  20. Lohela, M., Saaristo, A., Veikkola, T. and Alitalo, K., Lymphangiogenic growth factors, receptors and therapies, Thromb Haemost, 90 (2003) 167–184.

    CAS  Google Scholar 

  21. Yamane, A., Seetharam, L., Yamaguchi, S., Gotoh, N., Takahashi, T., Neufeld, G. and Shibuya, M., A new communication system between hepatocytes and sinusoidal endothelial cells in liver through vascular endothelial growth factor and Flt tyrosine kinase receptor family (Flt-1 and KDR/Flk-1), Oncogene, 9 (1994) 2683–2690.

    CAS  Google Scholar 

  22. de Vries, C., Escobedo, J.A., Ueno, H., Houck, K., Ferrara, N. and Williams, L.T., The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor, Science, 255 (1992) 989–991.

    CAS  Google Scholar 

  23. Terman, B.I., Dougher-Vermazen, M., Carrion, M.E., Dimitrov, D., Armellino, D.C., Gospodarowicz, D. and Bohlen, P., Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor, Biochem. Biophys. Res. Commun., 187 (1992) 1579–1586.

    CAS  Google Scholar 

  24. Quinn, T.P., Peters, K.G., De Vries, C., Ferrara, N. and Williams, L.T., Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium, Proc. Natl. Acad. Sci. USA, 90 (1993) 7533–7537.

    CAS  Google Scholar 

  25. Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., Saksela, O., Kalkkinen, N. and Alitalo, K., A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases, EMBO J., 15 (1996) 290–298.

    CAS  Google Scholar 

  26. Lee, J., Gray, A., Yuan, J., Luoh, S.M., Avraham, H. and Wood, W.I., Vascular endothelial growth factor-related protein: A ligand and specific activator of the tyrosine kinase receptor Flt4, Proc. Natl. Acad. Sci. USA, 93 (1996) 1988–1992.

    CAS  Google Scholar 

  27. Achen, M.G., Jeltsch, M., Kukk, E., Makinen, T., Vitali, A., Wilks, A.F., Alitalo, K. and Stacker, S.A., Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4), Proc. Natl. Acad. Sci. USA, 95 (1998) 548–553.

    CAS  Google Scholar 

  28. Soker, S., Takashima, S., Miao, H.Q., Neufeld, G. and Klagsbrun, M., Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor, Cell, 92 (1998) 735–745.

    CAS  Google Scholar 

  29. Gluzman-Poltorak, Z., Cohen, T., Herzog, Y. and Neufeld, G., Neuropilin-2 is a receptor for the vascular endothelial growth factor (VEGF) forms VEGF-145 and VEGF-165 [corrected], J. Biol. Chem., 275 (2000) 18040–18045.

    CAS  Google Scholar 

  30. Leung, D.W., Cachianes, G., Kuang, W.J., Goeddel, D.V. and Ferrara, N., Vascular endothelial growth factor is a secreted angiogenic mitogen, Science, 246 (1989) 1306–1309.

    CAS  Google Scholar 

  31. Keck, P.J., Hauser, S.D., Krivi, G., Sanzo, K., Warren, T., Feder, J. and Connolly, D.T., Vascular permeability factor, an endothelial cell mitogen related to PDGF, Science, 246 (1989) 1309–1312.

    CAS  Google Scholar 

  32. Tischer, E., Mitchell, R., Hartman, T., Silva, M., Gospodarowicz, D., Fiddes, J.C. and Abraham, J.A., The human gene for vascular endothelial growth factor: Multiple protein forms are encoded through alternative exon splicing, J. Biol. Chem., 266 (1991) 11947–11954.

    CAS  Google Scholar 

  33. Poltorak, Z., Cohen, T., Sivan, R., Kandelis, Y., Spira, G., Vlodavsky, I., Keshet, E. and Neufeld, G., VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix, J. Biol. Chem., 272 (1997) 7151–7158.

    CAS  Google Scholar 

  34. Whittle, C., Gillespie, K., Harrison, R., Mathieson, P.W. and Harper, S.J., Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant, Clin. Sci. (Lond), 97 (1999) 303–312.

    CAS  Google Scholar 

  35. Lange, T., Guttmann-Raviv, N., Baruch, L., Machluf, M. and Neufeld, G., VEGF162, a new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells, J. Biol. Chem., 278 (2003) 17164–17169.

    CAS  Google Scholar 

  36. Bates, D.O., Cui, T.G., Doughty, J.M., Winkler, M., Sugiono, M., Shields, J.D., Peat, D., Gillatt, D. and Harper, S.J., VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma, Cancer Res., 62 (2002) 4123–4131.

    CAS  Google Scholar 

  37. Jingjing, L., Xue, Y., Agarwal, N. and Roque, R.S., Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor, Invest Ophthalmol Vis. Sci., 40 (1999) 752–759.

    CAS  Google Scholar 

  38. Houck, K.A., Ferrara, N., Winer, J., Cachianes, G., Li, B. and Leung, D.W., The vascular endothelial growth factor family: Identification of a fourth molecular species and characterization of alternative splicing of RNA, Mol. Endocrinol, 5 (1991) 1806–1814.

    Article  CAS  Google Scholar 

  39. Vincenti, V., Cassano, C., Rocchi, M. and Persico, G., Assignment of the vascular endothelial growth factor gene to human chromosome 6p21.3, Circulation, 93 (1996) 1493–1495.

    CAS  Google Scholar 

  40. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. and Heldin, C.H., Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor, J. Biol. Chem., 269 (1994) 26988–26995.

    CAS  Google Scholar 

  41. Millauer, B., Wizigmann-Voos, S., Schnurch, H., Martinez, R., Moller, N.P., Risau, W. and Ullrich, A., High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis, Cell, 72 (1993) 835–846.

    CAS  Google Scholar 

  42. Shibuya, M., Yamaguchi, S., Yamane, A., Ikeda, T., Tojo, A., Matsushime, H. and Sato, M., Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family, Oncogene, 5 (1990) 519–524.

    CAS  Google Scholar 

  43. Terman, B.I., Carrion, M.E., Kovacs, E., Rasmussen, B.A., Eddy, R.L. and Shows, T.B., Identification of a new endothelial cell growth factor receptor tyrosine kinase, Oncogene, 6 (1991) 1677–1683.

    CAS  Google Scholar 

  44. Barleon, B., Totzke, F., Herzog, C., Blanke, S., Kremmer, E., Siemeister, G., Marme, D. and Martiny-Baron, G., Mapping of the sites for ligand binding and receptor dimerization at the extracellular domain of the vascular endothelial growth factor receptor FLT-1, J. Biol. Chem., 272 (1997) 10382–10388.

    CAS  Google Scholar 

  45. Wiesmann, C., Fuh, G., Christinger, H.W., Eigenbrot, C., Wells, J.A. and de Vos, A.M., Crystal structure at 1.7 a resolution of VEGF in complex with domain 2 of the Flt-1 receptor, Cell, 91 (1997) 695–704.

    CAS  Google Scholar 

  46. Fuh, G., Li, B., Crowley, C., Cunningham, B. and Wells, J.A., Requirements for binding and signaling of the kinase domain receptor for vascular endothelial growth factor, J. Biol. Chem., 273 (1998) 11197–11204.

    CAS  Google Scholar 

  47. Shinkai, A., Ito, M., Anazawa, H., Yamaguchi, S., Shitara, K. and Shibuya, M., Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor, J. Biol. Chem., 273 (1998) 31283–31288.

    CAS  Google Scholar 

  48. Tao, Q., Backer, M.V., Backer, J.M. and Terman, B.I., Kinase insert domain receptor (KDR) extracellular immunoglobulin-like domains 4–7 contain structural features that block receptor dimerization and vascular endothelial growth factor-induced signaling, J. Biol. Chem., 276 (2001) 21916–21923.

    CAS  Google Scholar 

  49. Keyt, B.A., Nguyen, H.V., Berleau, L.T., Duarte, C.M., Park, J., Chen, H. and Ferrara, N., Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors: Generation of receptor-selective VEGF variants by site-directed mutagenesis, J. Biol. Chem., 271 (1996) 5638–5646.

    CAS  Google Scholar 

  50. Li, B., Fuh, G., Meng, G., Xin, X., Gerritsen, M.E., Cunningham, B. and de Vos, A.M., Receptor-selective variants of human vascular endothelial growth factor: Generation and characterization, J. Biol. Chem., 275 (2000) 29823–29828.

    CAS  Google Scholar 

  51. Pan, B., Li, B., Russell, S.J., Tom, J.Y., Cochran, A.G. and Fairbrother, W.J., Solution structure of a phage-derived peptide antagonist in complex with vascular endothelial growth factor, J. Mol. Biol., 316 (2002) 769–787.

    CAS  Google Scholar 

  52. Muller, Y.A., Li, B., Christinger, H.W., Wells, J.A., Cunningham, B.C. and de Vos, A.M., Vascular endothelial growth factor: Crystal structure and functional mapping of the kinase domain receptor binding site, Proc. Natl. Acad. Sci. USA, 94 (1997) 7192–7197.

    CAS  Google Scholar 

  53. Ferrara, N. and Henzel, W.J., Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells, Biochem. Biophys. Res. Commun., 161 (1989) 851–858.

    CAS  Google Scholar 

  54. He, Z. and Tessier-Lavigne, M., Neuropilin is a receptor for the axonal chemorepellent Semaphorin III, Cell, 90 (1997) 739–751.

    CAS  Google Scholar 

  55. Kolodkin, A.L., Levengood, D.V., Rowe, E.G., Tai, Y.T., Giger, R.J. and Ginty, D.D., Neuropilin is a semaphorin III receptor, Cell, 90 (1997) 753–762.

    CAS  Google Scholar 

  56. Chen, H., Chedotal, A., He, Z., Goodman, C.S. and Tessier-Lavigne, M., Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III, Neuron, 19 (1997) 547–559.

    CAS  Google Scholar 

  57. Mamluk, R., Gechtman, Z., Kutcher, M.E., Gasiunas, N., Gallagher, J. and Klagsbrun, M., Neuropilin-1 binds vascular endothelial growth factor 165, placenta growth factor-2, and heparin via its b1b2 domain, J. Biol. Chem., 277 (2002) 24818–24825.

    CAS  Google Scholar 

  58. Wang, L., Zeng, H., Wang, P., Soker, S. and Mukhopadhyay, D., Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration, J. Biol. Chem., 278 (2003) 48848–48860.

    CAS  Google Scholar 

  59. Houck, K.A., Leung, D.W., Rowland, A.M., Winer, J. and Ferrara, N., Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms, J. Biol. Chem., 267 (1992) 26031–26037.

    CAS  Google Scholar 

  60. Park, J.E., Keller, G.A. and Ferrara, N., The vascular endothelial growth factor (VEGF) isoforms: Differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF, Mol. Biol. Cell, 4 (1993) 1317–1326.

    CAS  Google Scholar 

  61. Woolard, J., Wang, W.Y., Bevan, H.S., Qiu, Y., Morbidelli, L., Pritchard-Jones, R.O., Cui, T.G., Sugiono, M., Waine, E., Perrin, R., Foster, R., Digby-Bell, J., Shields, J.D., Whittles, C.E., Mushens, R.E., Gillatt, D.A., Ziche, M., Harper, S.J. and Bates, D.O., VEGF165b, an inhibitory vascular endothelial growth factor splice variant: Mechanism of action, in vivo effect on angiogenesis and endogenous protein expression, Cancer Res., 64 (2004) 7822–7835.

    CAS  Google Scholar 

  62. Tessler, S., Rockwell, P., Hicklin, D., Cohen, T., Levi, B.Z., Witte, L., Lemischka, I.R. and Neufeld, G., Heparin modulates the interaction of VEGF165 with soluble and cell associated flk-1 receptors, J. Biol. Chem., 269 (1994) 12456–12461.

    CAS  Google Scholar 

  63. Gitay-Goren, H., Cohen, T., Tessler, S., Soker, S., Gengrinovitch, S., Rockwell, P., Klagsbrun, M., Levi, B.Z. and Neufeld, G., Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells, J. Biol. Chem., 271 (1996) 5519–5523.

    CAS  Google Scholar 

  64. Cohen, T., Gitay-Goren, H., Sharon, R., Shibuya, M., Halaban, R., Levi, B.Z. and Neufeld, G., VEGF121, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan sulfates for efficient binding to the VEGF receptors of human melanoma cells, J. Biol. Chem., 270 (1995) 11322–11326.

    CAS  Google Scholar 

  65. Keyt, B.A., Berleau, L.T., Nguyen, H.V., Chen, H., Heinsohn, H., Vandlen, R. and Ferrara, N., The carboxyl-terminal domain (111–165) of vascular endothelial growth factor is critical for its mitogenic potency, J. Biol. Chem., 271 (1996) 7788–7795.

    CAS  Google Scholar 

  66. Fairbrother, W.J., Champe, M.A., Christinger, H.W., Keyt, B.A. and Starovasnik, M.A., Solution structure of the heparin-binding domain of vascular endothelial growth factor, Structure, 6 (1998) 637–648.

    CAS  Google Scholar 

  67. Shweiki, D., Itin, A., Soffer, D. and Keshet, E., Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis, Nature, 359 (1992) 843–845.

    CAS  Google Scholar 

  68. Stein, I., Neeman, M., Shweiki, D., Itin, A. and Keshet, E., Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes, Mol. Cell Biol., 15 (1995) 5363–5368.

    CAS  Google Scholar 

  69. Ikeda, E., Achen, M.G., Breier, G. and Risau, W., Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells, J. Biol. Chem., 270 (1995) 19761–19766.

    CAS  Google Scholar 

  70. Pugh, C.W. and Ratcliffe, P.J., Regulation of angiogenesis by hypoxia: Role of the HIF system, Nat. Med., 9 (2003) 677–684.

    CAS  Google Scholar 

  71. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., Salic, A., Asara, J.M., Lane, W.S. and Kaelin, W.G., Jr., HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing, Science, 292 (2001) 464–468.

    CAS  Google Scholar 

  72. Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., Kriegsheim, A., Hebestreit, H.F., Mukherji, M., Schofield, C.J., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J., Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation, Science, 292 (2001) 468–472.

    CAS  Google Scholar 

  73. Yu, F., White, S.B., Zhao, Q. and Lee, F.S., HIF-1alpha binding to VHL is regulated by stimulus-sensitive proline hydroxylation, Proc. Natl. Acad. Sci. USA, 98 (2001) 9630–9635.

    CAS  Google Scholar 

  74. Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W. and Ratcliffe, P.J., Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation, EMBO J., 20 (2001) 5197–5206.

    CAS  Google Scholar 

  75. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T. and Shibuya, M., Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice, Proc. Natl. Acad. Sci. USA, 95 (1998) 9349–9354.

    CAS  Google Scholar 

  76. Fong, G.H., Zhang, L., Bryce, D.M. and Peng, J., Increased hemangioblast commitment, not vascular disorganization, is the primary defect in flt-1 knock-out mice, Development, 126 (1999) 3015–3025.

    CAS  Google Scholar 

  77. Zeng, H., Dvorak, H.F. and Mukhopadhyay, D., Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinase-dependent pathways, J. Biol. Chem., 276 (2001) 26969–26979.

    CAS  Google Scholar 

  78. Gille, H., Kowalski, J., Yu, L., Chen, H., Pisabarro, M.T., Davis-Smyth, T. and Ferrara, N., A repressor sequence in the juxtamembrane domain of Flt-1 (VEGFR-1) constitutively inhibits vascular endothelial growth factor-dependent phosphatidylinositol 3′-kinase activation and endothelial cell migration, EMBO J., 19 (2000) 4064–4073.

    CAS  Google Scholar 

  79. Barleon, B., Sozzani, S., Zhou, D., Weich, H.A., Mantovani, A. and Marme, D., Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1, Blood, 87 (1996) 3336–3343.

    CAS  Google Scholar 

  80. LeCouter, J., Moritz, D.R., Li, B., Phillips, G.L., Liang, X.H., Gerber, H.P., Hillan, K.J. and Ferrara, N., Angiogenesis-independent endothelial protection of liver: Role of VEGFR-1, Science, 299 (2003) 890–893.

    CAS  Google Scholar 

  81. Rissanen, T.T., Markkanen, J.E., Gruchala, M., Heikura, T., Puranen, A., Kettunen, M.I., Kholova, I., Kauppinen, R.A., Achen, M.G., Stacker, S.A., Alitalo, K. and Yla-Herttuala, S., VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses, Circ. Res., 92 (2003) 1098–1106.

    CAS  Google Scholar 

  82. Nagy, J.A., Vasile, E., Feng, D., Sundberg, C., Brown, L.F., Detmar, M.J., Lawitts, J.A., Benjamin, L., Tan, X., Manseau, E.J., Dvorak, A.M. and Dvorak, H.F., Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis, J. Exp. Med., 196 (2002) 1497–1506.

    CAS  Google Scholar 

  83. Nagy, J.A., Vasile, E., Feng, D., Sundberg, C., Brown, L.F., Manseau, E.J., Dvorak, A.M. and Dvorak, H.F., VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations, Cold Spring. Harb. Symp. Quant. Biol., 67 (2002) 227–237.

    CAS  Google Scholar 

  84. Olofsson, B., Pajusola, K., Kaipainen, A., von Euler, G., Joukov, V., Saksela, O., Orpana, A., Pettersson, R.F., Alitalo, K. and Eriksson, U., Vascular endothelial growth factor B, a novel growth factor for endothelial cells, Proc. Natl. Acad. Sci. USA, 93 (1996) 2576–2581.

    CAS  Google Scholar 

  85. Aase, K., Lymboussaki, A., Kaipainen, A., Olofsson, B., Alitalo, K. and Eriksson, U., Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in the developing vasculature, Dev. Dyn., 215 (1999) 12–25.

    CAS  Google Scholar 

  86. Olofsson, B., Korpelainen, E., Pepper, M.S., Mandriota, S.J., Aase, K., Kumar, V., Gunji, Y., Jeltsch, M.M., Shibuya, M., Alitalo, K. and Eriksson, U., Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells, Proc. Natl. Acad. Sci. USA, 95 (1998) 11709–11714.

    CAS  Google Scholar 

  87. Paavonen, K., Horelli-Kuitunen, N., Chilov, D., Kukk, E., Pennanen, S., Kallioniemi, O.P., Pajusola, K., Olofsson, B., Eriksson, U., Joukov, V., Palotie, A. and Alitalo, K., Novel human vascular endothelial growth factor genes VEGF-B and VEGF-C localize to chromosomes 11q13 and 4q34, respectively, Circulation, 93 (1996) 1079–1082.

    CAS  Google Scholar 

  88. Olofsson, B., Pajusola, K., von Euler, G., Chilov, D., Alitalo, K. and Eriksson, U., Genomic organization of the mouse and human genes for vascular endothelial growth factor B (VEGF-B) and characterization of a second splice isoform, J. Biol. Chem., 271 (1996) 19310–19317.

    CAS  Google Scholar 

  89. Makinen, T., Olofsson, B., Karpanen, T., Hellman, U., Soker, S., Klagsbrun, M., Eriksson, U. and Alitalo, K., Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1, J. Biol. Chem., 274 (1999) 21217–21222.

    CAS  Google Scholar 

  90. Guillin, M.C., Bezeaud, A., Bouton, M.C. and Jandrot-Perrus, M., Thrombin specificity, Thromb Haemost, 74 (1995) 129–133.

    CAS  Google Scholar 

  91. Louzier, V., Raffestin, B., Leroux, A., Branellec, D., Caillaud, J.M., Levame, M., Eddahibi, S. and Adnot, S., Role of VEGF-B in the lung during development of chronic hypoxic pulmonary hypertension, Am. J. Physiol. Lung. Cell. Mol. Physiol., 284 (2003) L926–937.

    CAS  Google Scholar 

  92. Silvestre, J.S., Tamarat, R., Ebrahimian, T.G., Le-Roux, A., Clergue, M., Emmanuel, F., Duriez, M., Schwartz, B., Branellec, D. and Levy, B.I., Vascular endothelial growth factor-B promotes in vivo angiogenesis, Circ. Res., 93 (2003) 114–123.

    CAS  Google Scholar 

  93. Bellomo, D., Headrick, J.P., Silins, G.U., Paterson, C.A., Thomas, P.S., Gartside, M., Mould, A., Cahill, M.M., Tonks, I.D., Grimmond, S.M., Townson, S., Wells, C., Little, M., Cummings, M.C., Hayward, N.K. and Kay, G.F., Mice lacking the vascular endothelial growth factor-B gene (Vegfb) have smaller hearts, dysfunctional coronary vasculature, and impaired recovery from cardiac ischemia, Circ. Res., 86 (2000) E29–35.

    CAS  Google Scholar 

  94. Aase, K., von Euler, G., Li, X., Ponten, A., Thoren, P., Cao, R., Cao, Y., Olofsson, B., Gebre-Medhin, S., Pekny, M., Alitalo, K., Betsholtz, C. and Eriksson, U., Vascular endothelial growth factor-B-deficient mice display an atrial conduction defect, Circulation, 104 (2001) 358–364.

    CAS  Google Scholar 

  95. Yoon, Y.S. and Losordo, D.W., All in the family: VEGF-B joins the ranks of proangiogenic cytokines, Circ. Res., 93 (2003) 87–90.

    CAS  Google Scholar 

  96. Eriksson, U. and Alitalo, K., Structure, expression and receptor-binding properties of novel vascular endothelial growth factors, Curr. Top. Microbiol. Immunol., 237 (1999) 41–57.

    CAS  Google Scholar 

  97. Miquerol, L., Gertsenstein, M., Harpal, K., Rossant, J. and Nagy, A., Multiple developmental roles of VEGF suggested by a LacZ-tagged allele, Dev. Biol., 212 (1999) 307–322.

    CAS  Google Scholar 

  98. Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P. and Persico, M.G., Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor, Proc. Natl. Acad. Sci. USA, 88 (1991) 9267–9271.

    CAS  Google Scholar 

  99. Persico, M.G., Vincenti, V. and DiPalma, T., Structure, expression and receptor-binding properties of placenta growth factor (PlGF), Curr. Top. Microbiol. Immunol., 237 (1999) 31–40.

    CAS  Google Scholar 

  100. Park, J.E., Chen, H.H., Winer, J., Houck, K.A. and Ferrara, N., Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR, J. Biol. Chem., 269 (1994) 25646–25654.

    CAS  Google Scholar 

  101. Iyer, S., Leonidas, D.D., Swaminathan, G.J., Maglione, D., Battisti, M., Tucci, M., Persico, M.G. and Acharya, K.R., The crystal structure of human placenta growth factor-1 (PlGF-1), an angiogenic protein, at 2.0 a resolution, J. Biol. Chem., 276 (2001) 12153–12161.

    CAS  Google Scholar 

  102. Christinger, H.W., Fuh, G., de Vos, A.M. and Wiesmann, C., The crystal structure of placental growth factor in complex with domain 2 of vascular endothelial growth factor receptor-1, J. Biol. Chem., 279 (2004) 10382–10388.

    CAS  Google Scholar 

  103. Errico, M., Riccioni, T., Iyer, S., Pisano, C., Acharya, K.R., Persico, M.G. and De Falco, S., Identification of placenta growth factor determinants for binding and activation of Flt-1 receptor, J. Biol. Chem., 279 (2004) 43929–43939.

    CAS  Google Scholar 

  104. Maglione, D., Guerriero, V., Viglietto, G., Ferraro, M.G., Aprelikova, O., Alitalo, K., Del Vecchio, S., Lei, K.J., Chou, J.Y. and Persico, M.G., Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14, Oncogene, 8 (1993) 925–931.

    CAS  Google Scholar 

  105. Cao, Y., Ji, W.R., Qi, P. and Rosin, A., Placenta growth factor: Identification and characterization of a novel isoform generated by RNA alternative splicing, Biochem. Biophys. Res. Commun., 235 (1997) 493–498.

    CAS  Google Scholar 

  106. Yang, W., Ahn, H., Hinrichs, M., Torry, R.J. and Torry, D.S., Evidence of a novel isoform of placenta growth factor (PlGF-4) expressed in human trophoblast and endothelial cells, J. Reprod. Immunol., 60 (2003) 53–60.

    CAS  Google Scholar 

  107. Hauser, S. and Weich, H.A., A heparin-binding form of placenta growth factor (PlGF-2) is expressed in human umbilical vein endothelial cells and in placenta, Growth Factors, 9 (1993) 259–268.

    Article  CAS  Google Scholar 

  108. Migdal, M., Huppertz, B., Tessler, S., Comforti, A., Shibuya, M., Reich, R., Baumann, H. and Neufeld, G., Neuropilin-1 is a placenta growth factor-2 receptor, J. Biol. Chem., 273 (1998) 22272–22278.

    CAS  Google Scholar 

  109. Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., Nagy, J.A., Hooper, A., Priller, J., De Klerck, B., Compernolle, V., Daci, E., Bohlen, P., Dewerchin, M., Herbert, J.M., Fava, R., Matthys, P., Carmeliet, G., Collen, D., Dvorak, H.F., Hicklin, D.J. and Carmeliet, P., Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1, Nat. Med., 8 (2002) 831–840.

    CAS  Google Scholar 

  110. Autiero, M., Waltenberger, J., Communi, D., Kranz, A., Moons, L., Lambrechts, D., Kroll, J., Plaisance, S., De Mol, M., Bono, F., Kliche, S., Fellbrich, G., Ballmer-Hofer, K., Maglione, D., Mayr-Beyrle, U., Dewerchin, M., Dombrowski, S., Stanimirovic, D., Van Hummelen, P., Dehio, C., Hicklin, D.J., Persico, G., Herbert, J.M., Shibuya, M., Collen, D., Conway, E.M. and Carmeliet, P., Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1, Nat. Med., 9 (2003) 936–943.

    CAS  Google Scholar 

  111. DiSalvo, J., Bayne, M.L., Conn, G., Kwok, P.W., Trivedi, P.G., Soderman, D.D., Palisi, T.M., Sullivan, K.A. and Thomas, K.A., Purification and characterization of a naturally occurring vascular endothelial growth factor.placenta growth factor heterodimer, J. Biol. Chem., 270 (1995) 7717–7723.

    CAS  Google Scholar 

  112. Cao, Y., Chen, H., Zhou, L., Chiang, M.K., Anand-Apte, B., Weatherbee, J.A., Wang, Y., Fang, F., Flanagan, J.G. and Tsang, M.L., Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR, J. Biol. Chem., 271 (1996) 3154–3162.

    CAS  Google Scholar 

  113. Eriksson, A., Cao, R., Pawliuk, R., Berg, S.M., Tsang, M., Zhou, D., Fleet, C., Tritsaris, K., Dissing, S., Leboulch, P. and Cao, Y., Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers, Cancer Cell, 1 (2002) 99–108.

    CAS  Google Scholar 

  114. Carmeliet, P., Moons, L., Luttun, A., Vincenti, V., Compernolle, V., De Mol, M., Wu, Y., Bono, F., Devy, L., Beck, H., Scholz, D., Acker, T., DiPalma, T., Dewerchin, M., Noel, A., Stalmans, I., Barra, A., Blacher, S., Vandendriessche, T., Ponten, A., Eriksson, U., Plate, K.H., Foidart, J.M., Schaper, W., Charnock-Jones, D.S., Hicklin, D.J., Herbert, J.M., Collen, D. and Persico, M.G., Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions, Nat. Med., 7 (2001) 575–583.

    CAS  Google Scholar 

  115. Odorisio, T., Schietroma, C., Zaccaria, M.L., Cianfarani, F., Tiveron, C., Tatangelo, L., Failla, C.M. and Zambruno, G., Mice overexpressing placenta growth factor exhibit increased vascularization and vessel permeability, J. Cell Sci., 115 (2002) 2559–2567.

    CAS  Google Scholar 

  116. Oura, H., Bertoncini, J., Velasco, P., Brown, L.F., Carmeliet, P. and Detmar, M., A critical role of placental growth factor in the induction of inflammation and edema formation, Blood, 101 (2003) 560–567.

    CAS  Google Scholar 

  117. Veikkola, T., Jussila, L., Makinen, T., Karpanen, T., Jeltsch, M., Petrova, T.V., Kubo, H., Thurston, G., McDonald, D.M., Achen, M.G., Stacker, S.A. and Alitalo, K., Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice, EMBO J., 20 (2001) 1223–1231.

    CAS  Google Scholar 

  118. Baldwin, M.E., Roufail, S., Halford, M.M., Alitalo, K., Stacker, S.A. and Achen, M.G., Multiple forms of mouse vascular endothelial growth factor-D are generated by RNA splicing and proteolysis, J. Biol. Chem., 276 (2001) 44307–44314.

    CAS  Google Scholar 

  119. Joukov, V., Sorsa, T., Kumar, V., Jeltsch, M., Claesson-Welsh, L., Cao, Y., Saksela, O., Kalkkinen, N. and Alitalo, K., Proteolytic processing regulates receptor specificity and activity of VEGF-C, EMBO J., 16 (1997) 3898–3911.

    CAS  Google Scholar 

  120. Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E.C., Wise, L., Mercer, A., Kowalski, H., Kerjaschki, D., Stacker, S.A., Achen, M.G. and Alitalo, K., Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3, EMBO J., 20 (2001) 4762–4773.

    CAS  Google Scholar 

  121. Stacker, S.A., Stenvers, K., Caesar, C., Vitali, A., Domagala, T., Nice, E., Roufail, S., Simpson, R.J., Moritz, R., Karpanen, T., Alitalo, K. and Achen, M.G., Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers, J. Biol. Chem., 274 (1999) 32127–32136.

    CAS  Google Scholar 

  122. Baldwin, M.E., Catimel, B., Nice, E.C., Roufail, S., Hall, N.E., Stenvers, K.L., Karkkainen, M.J., Alitalo, K., Stacker, S.A. and Achen, M.G., The specificity of receptor binding by vascular endothelial growth factor-d is different in mouse and man, J. Biol. Chem., 276 (2001) 19166–19171.

    CAS  Google Scholar 

  123. McColl, B.K., Baldwin, M.E., Roufail, S., Freeman, C., Moritz, R.L., Simpson, R.J., Alitalo, K., Stacker, S.A. and Achen, M.G., Plasmin activates the lymphangiogenic growth factors VEGF-C and VEGF-D, J. Exp. Med., 198 (2003) 863–868.

    CAS  Google Scholar 

  124. Siegfried, G., Basak, A., Cromlish, J.A., Benjannet, S., Marcinkiewicz, J., Chretien, M., Seidah, N.G. and Khatib, A.M., The secretory proprotein convertases furin, PC5, and PC7 activate VEGF-C to induce tumorigenesis, J. Clin. Invest., 111 (2003) 1723–1732.

    CAS  Google Scholar 

  125. Joukov, V., Kumar, V., Sorsa, T., Arighi, E., Weich, H., Saksela, O. and Alitalo, K., A recombinant mutant vascular endothelial growth factor-C that has lost vascular endothelial growth factor receptor-2 binding, activation, and vascular permeability activities, J. Biol. Chem., 273 (1998) 6599–6602.

    CAS  Google Scholar 

  126. Stacker, S.A., Vitali, A., Caesar, C., Domagala, T., Groenen, L.C., Nice, E., Achen, M.G. and Wilks, A.F., A mutant form of vascular endothelial growth factor (VEGF) that lacks VEGF receptor-2 activation retains the ability to induce vascular permeability, J. Biol. Chem., 274 (1999) 34884–34892.

    CAS  Google Scholar 

  127. Veikkola, T., Karkkainen, M., Claesson-Welsh, L. and Alitalo, K., Regulation of angiogenesis via vascular endothelial growth factor receptors, Cancer Res., 60 (2000) 203–212.

    CAS  Google Scholar 

  128. Eliceiri, B.P., Paul, R., Schwartzberg, P.L., Hood, J.D., Leng, J. and Cheresh, D.A., Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability, Mol. Cell, 4 (1999) 915–924.

    CAS  Google Scholar 

  129. Weis, S.M. and Cheresh, D.A., Pathophysiological consequences of VEGF-induced vascular permeability, Nature, 437 (2005) 497–504.

    CAS  Google Scholar 

  130. Eliceiri, B.P., Puente, X.S., Hood, J.D., Stupack, D.G., Schlaepfer, D.D., Huang, X.Z., Sheppard, D. and Cheresh, D.A., Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling, J. Cell Biol., 157 (2002) 149–160.

    CAS  Google Scholar 

  131. Robinson, S.D., Reynolds, L.E., Wyder, L., Hicklin, D.J. and Hodivala-Dilke, K.M., Beta3-integrin regulates vascular endothelial growth factor-A-dependent permeability, Arterioscler. Thromb. Vasc. Biol., 24 (2004) 2108–2114.

    CAS  Google Scholar 

  132. Borges, E., Jan, Y. and Ruoslahti, E., Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain, J. Biol. Chem., 275 (2000) 39867–39873.

    CAS  Google Scholar 

  133. Karkkainen, M.J., Haiko, P., Sainio, K., Partanen, J., Taipale, J., Petrova, T.V., Jeltsch, M., Jackson, D.G., Talikka, M., Rauvala, H., Betsholtz, C. and Alitalo, K., Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins, Nat. Immunol., 5 (2004) 74–80.

    CAS  Google Scholar 

  134. Baldwin, M.E., Halford, M.M., Roufail, S., Williams, R.A., Hibbs, M.L., Grail, D., Kubo, H., Stacker, S.A. and Achen, M.G., Vascular endothelial growth factor D is dispensable for development of the lymphatic system, Mol. Cell Biol., 25 (2005) 2441–2449.

    CAS  Google Scholar 

  135. Karkkainen, M.J., Saaristo, A., Jussila, L., Karila, K.A., Lawrence, E.C., Pajusola, K., Bueler, H., Eichmann, A., Kauppinen, R., Kettunen, M.I., Yla-Herttuala, S., Finegold, D.N., Ferrell, R.E. and Alitalo, K., A model for gene therapy of human hereditary lymphedema, Proc. Natl. Acad. Sci. USA, 98 (2001) 12677–12682.

    CAS  Google Scholar 

  136. Yuan, L., Moyon, D., Pardanaud, L., Breant, C., Karkkainen, M.J., Alitalo, K. and Eichmann, A., Abnormal lymphatic vessel development in neuropilin 2 mutant mice, Development, 129 (2002) 4797–4806.

    CAS  Google Scholar 

  137. Lyttle, D.J., Fraser, K.M., Fleming, S.B., Mercer, A.A. and Robinson, A.J., Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus, J. Virol, 68 (1994) 84–92.

    CAS  Google Scholar 

  138. Mercer, A.A., Wise, L.M., Scagliarini, A., McInnes, C.J., Buttner, M., Rziha, H.J., McCaughan, C.A., Fleming, S.B., Ueda, N. and Nettleton, P.F., Vascular endothelial growth factors encoded by Orf virus show surprising sequence variation but have a conserved, functionally relevant structure, J. Gen. Virol, 83 (2002) 2845–2855.

    CAS  Google Scholar 

  139. Ueda, N., Wise, L.M., Stacker, S.A., Fleming, S.B. and Mercer, A.A., Pseudocowpox virus encodes a homolog of vascular endothelial growth factor, Virology, 305 (2003) 298–309.

    CAS  Google Scholar 

  140. Wise, L.M., Veikkola, T., Mercer, A.A., Savory, L.J., Fleming, S.B., Caesar, C., Vitali, A., Makinen, T., Alitalo, K. and Stacker, S.A., Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1, Proc. Natl. Acad. Sci. USA, 96 (1999) 3071–3076.

    CAS  Google Scholar 

  141. Ogawa, S., Oku, A., Sawano, A., Yamaguchi, S., Yazaki, Y. and Shibuya, M., A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain, J. Biol. Chem., 273 (1998) 31273–31282.

    CAS  Google Scholar 

  142. Meyer, M., Clauss, M., Lepple-Wienhues, A., Waltenberger, J., Augustin, H.G., Ziche, M., Lanz, C., Buttner, M., Rziha, H.J. and Dehio, C., A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signaling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases, EMBO J., 18 (1999) 363–374.

    CAS  Google Scholar 

  143. Shibuya, M., Vascular endothelial growth factor receptor-2: Its unique signaling and specific ligand, VEGF-E, Cancer Sci., 94 (2003) 751–756.

    CAS  Google Scholar 

  144. Wise, L.M., Ueda, N., Dryden, N.H., Fleming, S.B., Caesar, C., Roufail, S., Achen, M.G., Stacker, S.A. and Mercer, A.A., Viral vascular endothelial growth factors vary extensively in amino acid sequence, receptor-binding specificities, and the ability to induce vascular permeability yet are uniformly active mitogens, J. Biol. Chem., 278 (2003) 38004–38014.

    CAS  Google Scholar 

  145. Savory, L.J., Stacker, S.A., Fleming, S.B., Niven, B.E. and Mercer, A.A., Viral vascular endothelial growth factor plays a critical role in orf virus infection, J. Virol., 74 (2000) 10699–10706.

    CAS  Google Scholar 

  146. Komori, Y., Nikai, T., Taniguchi, K., Masuda, K. and Sugihara, H., Vascular endothelial growth factor VEGF-like heparin-binding protein from the venom of Vipera aspis aspis (Aspic viper), Biochemistry, 38 (1999) 11796–11803.

    CAS  Google Scholar 

  147. Yamazaki, Y., Takani, K., Atoda, H. and Morita, T., Snake venom vascular endothelial growth factors (VEGFs) exhibit potent activity through their specific recognition of KDR (VEGF receptor 2), J. Biol. Chem., 278 (2003) 51985–51988.

    CAS  Google Scholar 

  148. Suto, K., Yamazaki, Y., Morita, T. and Mizuno, H., Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms: Insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1, J. Biol. Chem., 280 (2005) 2126–2131.

    CAS  Google Scholar 

  149. Junqueira de Azevedo, I.L., Farsky, S.H., Oliveira, M.L. and Ho, P.L., Molecular cloning and expression of a functional snake venom vascular endothelium growth factor (VEGF) from the Bothrops insularis pit viper. A new member of the VEGF family of proteins, J. Biol. Chem., 276 (2001) 39836–39842.

    CAS  Google Scholar 

  150. Gasmi, A., Bourcier, C., Aloui, Z., Srairi, N., Marchetti, S., Gimond, C., Wedge, S.R., Hennequin, L. and Pouyssegur, J., Complete structure of an increasing capillary permeability protein (ICPP) purified from Vipera lebetina venom. ICPP is angiogenic via vascular endothelial growth factor receptor signalling, J. Biol. Chem., 277 (2002) 29992–29998.

    CAS  Google Scholar 

  151. Takahashi, H., Hattori, S., Iwamatsu, A., Takizawa, H. and Shibuya, M., A novel snake venom vascular endothelial growth factor (VEGF) predominantly induces vascular permeability through preferential signaling via VEGF receptor-1, J. Biol. Chem., 279 (2004) 46304–46314.

    CAS  Google Scholar 

  152. Chen, Y.L., Tsai, I.H., Hong, T.M. and Tsai, S.H., Crotalid venom vascular endothelial growth factors has preferential affinity for VEGFR-1. Characterization of Protobothrops mucrosquamatus venom VEGF, Thromb. Haemost., 93 (2005) 331–338.

    CAS  Google Scholar 

  153. Tokunaga, Y., Yamazaki, Y. and Morita, T., Specific distribution of VEGF-F in Viperinae snake venoms: Isolation and characterization of a VGEF-F from the venom of Daboia russelli siamensis, Arch. Biochem. Biophys., 439 (2005) 241–247.

    CAS  Google Scholar 

  154. Yamazaki, Y., Tokunaga, Y., Takani, K. and Morita, T., Identification of the heparin-binding region of snake venom vascular endothelial growth factor (VEGF-F) and its blocking of VEGF-A165, Biochemistry, 44 (2005) 8858–8864.

    CAS  Google Scholar 

  155. Francischetti, I.M., My-Pham, V., Harrison, J., Garfield, M.K. and Ribeiro, J.M., Bitis gabonica (Gaboon viper) snake venom gland: Toward a catalog for the full-length transcripts (cDNA) and proteins, Gene, 337 (2004) 55–69.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, Y., Morita, T. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers 10, 515–527 (2006). https://doi.org/10.1007/s11030-006-9027-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-006-9027-3

Keywords

Navigation