Skip to main content

Advertisement

Log in

Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transplantation of adult marrow stromal cells (MSCs) has been developed as a new method of treating severe ischemia diseases by therapeutic angiogenesis. Erythropoietin (EPO) is capable of inducing angiogenesis and inhibiting MSCs apoptosis. The effect of EPO on the therapeutic potency of MSCs transplantation in a rat model of limb ischemia was investigated in the current study. The results indicate that the combined treatment with MSC transplantation and EPO infusion is superior to MSC transplantation alone in the treatment of limb ischemia. MSCs transplantation and EPO infusion could enhance the angiogenic effect of each other to achieve a better therapeutic effect. This combination therapy may become a more effective approach for ischemia diseases of the limbs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li TS, Ito H, Hayashi M et al (2005) Cellular expression of integrin-beta 1 is of critical importance for inducing therapeutic angiogenesis by cell implantation. Cardiovasc Res 65:64–72. doi:10.1016/j.cardiores.2004.08.019

    Article  CAS  PubMed  Google Scholar 

  2. Koshikawa M, Shimodaira S, Yoshioka T et al (2006) Therapeutic angiogenesis by bone marrow implantation for critical hand ischemia in patients with peripheral arterial disease: a pilot study. Curr Med Res Opin 22:793–798. doi:10.1185/030079906X1000078

    Article  PubMed  Google Scholar 

  3. Semenza GL (2006) Therapeutic angiogenesis: another passing phase? Circ Res 98:1115–1116. doi:10.1161/01.RES.0000223485.43020.9e

    Article  CAS  PubMed  Google Scholar 

  4. Yla-Herttuala S, Alitalo K (2003) Gene transfer as a tool to induce therapeutic vascular growth. Nat Med 9:694–701. doi:10.1038/nm0603-694

    Article  PubMed  Google Scholar 

  5. Shintani S, Murohara T, Ikeda H et al (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103:897–903. doi:10.1161/hc2301.092122

    Article  CAS  PubMed  Google Scholar 

  6. Al-Khaldi A, Al-Sabti H, Galipeau J et al (2003) Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg 75:204–209. doi:10.1016/S0003-4975(02)04291-1

    Article  PubMed  Google Scholar 

  7. Ozawa CR, Banfi A, Glazer NL et al (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113:516–527

    CAS  PubMed  Google Scholar 

  8. Ware JA, Simmon M (1997) Angiogenesis in ischemia heart disease. Nat Med 3:158–164. doi:10.1038/nm0297-158

    Article  CAS  PubMed  Google Scholar 

  9. Casscells W (2000) Growth factor therapies for vascular injury and ischemia. Circulation 101:118–121

    Google Scholar 

  10. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967. doi:10.1126/science.275.5302.964

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi M, Li TS, Suzuki R et al (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. Am J Physiol Heart Circ Physiol 291:H886–H893. doi:10.1152/ajpheart.00142.2006

    Article  CAS  PubMed  Google Scholar 

  12. Schaper W, Ito WD (1996) Molecular mechanisms of coronary collateral vessel growth. Circ Res 79:911–919

    CAS  PubMed  Google Scholar 

  13. Gorge G, Schmidt T, Ito BR, Pantely GA, Schaper W (1989) Microvascular and collateral adaptation in swine hearts following progressive coronary artery stenosis. Basic Res Cardiol 84:524–535. doi:10.1007/BF01908204

    Article  CAS  PubMed  Google Scholar 

  14. Kalka C, Masuda H, Takahashi T et al (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA 97:3422–3427. doi:10.1073/pnas.070046397

    Article  CAS  PubMed  Google Scholar 

  15. Isner JM, Kalka C, Kawamoto A et al (2001) Bone marrow as a source of endothelial cells for natural and iatrogenic vascular repair. Ann N Y Acad Sci 953:75–84

    Article  CAS  PubMed  Google Scholar 

  16. Conget PA, Minguell JJ (1999) Phenotypical and functional properties of human bone marrow mesenchymal progentior cells. J Cell Physiol 181:63–73. doi:10.1002/(SICI)1097-4652(199910)181:1<67::AID-JCP7>3.0.CO;2-C

    Article  Google Scholar 

  17. Ohgushi H, Caplan AI (1999) Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res 48:913–927. doi:10.1002/(SICI)1097-4636(1999)48:6<913::AID-JBM22>3.0.CO;2-0

    Article  CAS  PubMed  Google Scholar 

  18. Tang J, Xie Q, Pan G et al (2006) Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg 30:353–361. doi:10.1016/j.ejcts.2006.02.070

    Article  PubMed  Google Scholar 

  19. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49. doi:10.1038/nature00870

    Article  CAS  PubMed  Google Scholar 

  20. Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–489. doi:10.1080/14653240310003611

    Article  CAS  PubMed  Google Scholar 

  21. Kobayashi T, Hamano K, Li TS et al (2000) Enhancement of angiogenesis by the implantation of self bone marrow cells in a rat ischemic heart model. J Surg Res 89:189–195. doi:10.1006/jsre.2000.5828

    Article  CAS  PubMed  Google Scholar 

  22. Zhang D, Zhang F, Zhang Y et al (2006) Erythropoietin enhances the angiogenic potency of autologous bone marrow stromal cells in a rat model of myocardial infarction. Cardiology 108:228–236. doi:10.1159/000096803

    Article  PubMed  Google Scholar 

  23. Maiese K, Li F, Chong ZZ (2005) New avenues of exploration for erythropoietin. JAMA 293:90–95. doi:10.1001/jama.293.1.90

    Article  CAS  PubMed  Google Scholar 

  24. Chong ZZ, Kang JQ, Maiese K (2002) Angiogenesis and plasticity: role of erythropoietin in vascular systems. J Hematother Stem Cell Res 11:863–871. doi:10.1089/152581602321080529

    Article  CAS  PubMed  Google Scholar 

  25. Chedrawy EG, Wang JS, Nguyen DM et al (2002) Incorporation and integration of implanted myogenic and stem cells into native myocardial fibers: anatomic basis for functional improvements. J Thorac Cardiovasc Surg 124:584–590. doi:10.1067/mtc.2002.122544

    Article  PubMed  Google Scholar 

  26. Heeschen C, Aicher A, Lehmann R et al (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346. doi:10.1182/blood-2003-01-0223

    Article  CAS  PubMed  Google Scholar 

  27. Hamano K, Li TS, Kobayashi T et al (2001) The induction of angiogenesis by the implantation of autologous bone marrow cells: a novel and simple therapeutic method. Surgery 130:44–54. doi:10.1067/msy.2001.114762

    Article  CAS  PubMed  Google Scholar 

  28. Ozawa T, Toba K, Kato K et al (2006) Erythroid cells play essential roles in angiogenesis by bone marrow cell implantation. J Mol Cell Cardiol 40:629–638. doi:10.1016/j.yjmcc.2006.01.023

    Article  CAS  PubMed  Google Scholar 

  29. Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549. doi:10.1161/01.CIR.0000124062.31102.57

    Article  CAS  PubMed  Google Scholar 

  30. Rafiee P, Shi Y, Su J et al (2005) Erythropoietin protects the infant heart against ischemia-reperfusion injury by triggering multiple signaling pathways. Basic Res Cardiol 100:187–197. doi:10.1007/s00395-004-0508-1

    Article  CAS  PubMed  Google Scholar 

  31. Jaquet K, Krause K, Tawakol-Khodai M et al (2002) Erythropoietin and VEGF exhibit equal angiogenic potential. Microvasc Res 64:326–333. doi:10.1006/mvre.2002.2426

    Article  CAS  PubMed  Google Scholar 

  32. Solaroglu I, Solaroglu A, Kaptanoglu E et al (2003) Erythropoietin prevents ischemia-reperfusion from inducing oxidative damage in fetal rat brain. Childs Nerv Syst 19:19–22

    PubMed  Google Scholar 

  33. Smith KJ, Bleyer AJ, Little WC et al (2003) The cardiovascular effects of erythropoietin. Cardiovasc Res 59:538–548. doi:10.1016/S0008-6363(03)00468-1

    Article  CAS  PubMed  Google Scholar 

  34. Mancini DM, Katz SD, Lang CC et al (2003) Effect of erythropoietin on exercise capacity in patients with moderate to severe chronic heart failure. Circulation 107:294–299. doi:10.1161/01.CIR.0000044914.42696.6A

    Article  CAS  PubMed  Google Scholar 

  35. Kobayashi K, Kondo T, Inoue N et al (2006) Combination of in vivo angiopoietin-1 gene transfer and autologous bone marrow cell implantation for functional therapeutic angiogenesis. Arterioscler Thromb Vasc Biol 26:1465–1472. doi:10.1161/01.ATV.0000223865.64812.26

    Article  CAS  PubMed  Google Scholar 

  36. Le Blanc K, Pittenger M (2005) Mesenchymal stem cells: progress toward promise. Cytotherapy 7:36–45. doi:10.1080/14653240510018118

    Article  CAS  PubMed  Google Scholar 

  37. van der Meer P, Voors AA, Lipsic E et al (2004) Erythropoietin in cardiovascular diseases. Eur Heart J 25:285–291. doi:10.1016/j.ehj.2003.11.017

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from scientific research foundation of special purpose for doctors in higher education, this study was also supported in part by Shandong province young scientists research rewarding foundation, we thank Shandong province hospital for allowing us using their laboratories. We are grateful to Weidong Zhang, Qing Jia, Wei Xin, and Xiaoxia Lv for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, X., Wu, X., Ma, J. et al. Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia. Mol Biol Rep 37, 1467–1475 (2010). https://doi.org/10.1007/s11033-009-9541-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9541-3

Keywords

Navigation