Skip to main content
Log in

Aldose reductase is a potent regulator of TGF-β1 induced expression of fibronectin in human mesangial cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glomerulosclerosis is considered to be the final pathway leading to the progressive loss of renal function in several kidney diseases, transforming growth factor β1 (TGF-β1) plays a critical role in glomerulosclerosis. However, the mechanisms of TGF-β1 stimulating glomerulosclerosis remain poorly understood. Here we report that TGF-β1-induced expression of fibronectin (FN) depends on the activity of aldose reductase (AR) in human mesangial cells (HMCs).The results show that TGF-β1 increased the expression of FN, which attenuated by pharmacological inhibition of AR or knockdown of the enzyme by small interfering RNA (siRNA). MAPKs (ERK, JNK and p38) signalling pathways were activated in HMCs after stimulated by TGF-β1, inhibition of AR blunted the activation ERK, p38 and JNK signalling pathways. These changes were associated with decreased TGF-β1-induced expression of FN. These results indicate that AR is a potent regulator of TGF-β1 induced expression of FN in human mesangial cells: it suggests that inhibition of this enzyme may be useful to prevented extracellular matrix (ECM) deposition in glomerulosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

TGF-β1:

Transforming growth factor-β1

ECM:

Extracellular matrix

HMCs:

Human mesangial cells

AR:

Aldose reductase

FN:

Fibronectin

References

  1. Bonilla-Felix M, Parra C, Dajani T, Ferris M, Swinford RD, Portman RJ, Verani R (1999) Changing patterns in the histopathology of idiopathic nephrotic syndrome in children. Kidney Int 55:1885–1890

    Article  CAS  PubMed  Google Scholar 

  2. Srivastava T, Simon SD, Alon US (1999) High incidence of focal segmental glomerulosclerosis in nephrotic syndrome of childhood. Pediatr Nephrol 13:13–18

    Article  CAS  PubMed  Google Scholar 

  3. Korbet SM, Genchi RM, Borok RZ, Schwartz MM (1996) The racial prevalence of glomerular lesions in nephrotic adults. Am J Kidney Dis 27:647–651

    Article  CAS  PubMed  Google Scholar 

  4. Kitamura M, Sütö TS (1997) TGF-beta and glomerulonephritis: anti-inflammatory versus prosclerotic actions. Nephrol Dial Transplant 12:669–679

    Article  CAS  PubMed  Google Scholar 

  5. Poncelet A-C, Schnaper HW (1998) Regulation of human mesangial cell collagen expression by transforming growth factor-β1. Am J Physiol 275:F458–F466

    CAS  PubMed  Google Scholar 

  6. Yamamoto T, Noble NA, Cohen AH, Nast CC, Hishida A, Gold LI, Border WA (1996) Expression of transforming growth factor-β isoforms in human glomerular diseases. Kidney Int 49:461–469

    Article  CAS  PubMed  Google Scholar 

  7. Yang B, Hodgkinson A, Oates PJ, Millward BA, Demaine AG (2008) High glucose induction of DNA-binding activity of the transcription factor NFkappaB in patients with diabetic nephropathy. Biochim Biophys Acta 1782:295–302

    CAS  PubMed  Google Scholar 

  8. Jez JM, Flynn TG, Penning TM (1997) A new nomenclature for the aldoketo reductase superfamily. Biochem Pharmacol 54:639–647

    Article  CAS  PubMed  Google Scholar 

  9. Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50:21–33

    CAS  PubMed  Google Scholar 

  10. He Q, Khanna P, Van Srivastava SKF, Ansari NH (1998) Reduction of 4-hydroxynonenal and 4-hydroxyhexenal by retinal aldose reductase. Biochem Biophys Res Commun 247:719–722

    Article  CAS  PubMed  Google Scholar 

  11. Srivastava SK, Ramana KV, Bhatnagar A (2005) Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr Rev 26:380–392

    Article  CAS  PubMed  Google Scholar 

  12. Seo HG, Nishinaka T, Yabe-Nishimura C (2000) Nitric oxide up-regulates aldose reductase expression in rat vascular smooth muscle cells: a potential role for aldose reductase in vascular remodeling. Mol Pharmacol 57:709–717

    CAS  PubMed  Google Scholar 

  13. O’Connor T, Ireland LS, Harrison DJ, Hayes JD (1999) Major differences exist in the function and tissue-specific expression of human aflatoxin B1 aldehyde reductase and the principal human aldo–keto reductase AKR1 family members. Biochem J 343:487–504

    Article  PubMed  Google Scholar 

  14. Ramana KV, Willis MS, White MD, Horton JW, DiMaio JM, Srivastava D, Bhatnagar A, Srivastava SK (2006) Endotoxin-induced cardiomyopathy and systemic inflammation in mice is prevented by aldose reductase inhibition. Circulation 114(17):1838–1846

    Article  CAS  PubMed  Google Scholar 

  15. Qiu L, Wu X, Chau JF, Szeto IY, Tam WY, Guo Z, Chung SK, Oates PJ, Chung SS, Yang JY (2008) Aldose reductase regulates hepatic peroxisome proliferator-activated receptor alpha phosphorylation and activity to impact lipid homeostasis. J Biol Chem 283:17175–17183

    Article  CAS  PubMed  Google Scholar 

  16. Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Aggarwal BB, Srivastava SK (2002) Aldose reductase mediates mitogenic signaling in vascular smooth muscle cells. J Biol Chem 277:32063–32070

    Article  CAS  PubMed  Google Scholar 

  17. Lin WS, Zhang N, Qin R (2001) Effect of aldose reductase expression by transforming growth factor-β1 on rat mesangial cell. Natl Med J China 81:744–747 (in Chinese)

    CAS  Google Scholar 

  18. Jiang T, Yang J, Li H (2005) Effect of transforming growth factor-β1 on aldose reductase expression in rat mesangial cells and anti-Thy1 glomerulonephritis. Chin J Clin Exp Pathol 21:90–94 (in Chinese)

    CAS  Google Scholar 

  19. Yoshioka K, Takemura T, Murakami K, Okada M, Hino S, Miyamoto H, Maki S (1993) Transforming growth factor-beta protein and mRNA in glomeruli in normal and diseased human kidneys. Lab Invest 68:154–163

    CAS  PubMed  Google Scholar 

  20. Akagi Y, Isaka Y, Arai M, Kaneko T, Takenaka M, Moriyama T, Kaneda Y, Ando A, Orita Y, Kamada T, Ueda N, Imai E (1996) Inhibition of TGF-β1 expression by antisense oligonucleotides suppressed extracellular matrix accumulation in experimental glomerulonephritis. Kidney Int 50:148–155

    Article  CAS  PubMed  Google Scholar 

  21. Isaka Y, Fujiwara Y, Ueda N, Kaneda Y, Kamada T, Imai E (1993) Glomerulosclerosis induced by in vivo transfection of transforming growth factor-β or platelet-derived growth factor gene into the rat kidney. J Clin Investig 92:2597–2601

    Article  CAS  PubMed  Google Scholar 

  22. Mozes MM, Bottinger EP, Jacot TA, Kopp JB (1999) Renal expression of fibrotic matrix proteins and of transforming growth factor-β (TGF-β) isoforms in TGF-β transgenic mice. J Am Soc Nephrol 10:271–280

    CAS  PubMed  Google Scholar 

  23. Srivastava S, Watowich SJ, Petrash JM, Srivastava SK, Bhatnagar A (1999) Structural and kinetic determinants of aldehyde reduction by aldose reductase. Biochemistry 38:42–54

    Article  CAS  PubMed  Google Scholar 

  24. Srivastava S, Spite M, Trent JO, West MB, Ahmed Y, Bhatnagar A (2004) Aldose reductase-catalyzed reduction of aldehyde phospholipids. J Biol Chem 279:53395–53406

    Article  CAS  PubMed  Google Scholar 

  25. El-Kabbani O, Ruiz F, Darmanin C, Chung RP (2004) Aldose reductase structures: implications for mechanism and inhibition. Cell Mol Life Sci 61:750–762

    Article  CAS  PubMed  Google Scholar 

  26. King GL, Brownlee MB (1996) The cellular and molecular mechanisms of diabetic complications. Endocrinol Metab Clin N Am 25:255–270

    Article  CAS  Google Scholar 

  27. Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes 47:859–866

    Article  CAS  PubMed  Google Scholar 

  28. Jiang T, Che Q, Lin YF, Li H, Zhang N (2006) Aldose reductase regulates TGF-β1-induced production of fibronectin and type IV collagen in cultured rat mesangial cells. Nephrology 11:105–112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Grant of the National Natural Science Foundation of China (NSFC 30570857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Zhang, Y., Jiang, T. et al. Aldose reductase is a potent regulator of TGF-β1 induced expression of fibronectin in human mesangial cells. Mol Biol Rep 37, 3097–3103 (2010). https://doi.org/10.1007/s11033-009-9887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9887-6

Keywords

Navigation