Skip to main content

Advertisement

Log in

The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual’s susceptibility to sporadic colorectal cancer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Epidemiological data show that colorectal cancer (CRC) is the second most frequent malignancy worldwide. The involvement of “minor impact genes” such as XME and DNA-repair genes in the etiology of sporadic cancer has been postulated by other authors. We focused on analyzing polymorphisms in DNA-repair genes in CRC. We considered the following genes involved in DNA-repair pathways: base excision repair (OGG1 Ser326Cys, XRCC1 Trp194Arg and Arg399Gln); nucleotide excision repair [XPA (−4)G/A, XPC C/A (i11) and A33512C (Lys939Gln), XPD Asp312Asn and A18911C (Lys751Gln), XPF Arg415Gln, XPG Asp1104His, ERCC1 C118T]; homologous recombination repair [NBS1 Glu185Gln, Rad51 135G/C, XRCC3 C18067 (Thr241Met)]. The study group consisted of 133 patients diagnosed with sporadic CRC, while the control group was composed of 100 age-matched non-cancer volunteers. Genotyping was performed by PCR and PCR-RFLP. Fisher’s exact test with a Bonferroni correction for multiple testing was used. We found that: (i) XPC C/A (i11) heterozygous variant is associated with increased risk of CRC [OR is 2.07 (95% CI 1.1391, 3.7782) P = 0.038], (ii) XPD A18911C (Lys751Gln) is associated with decreased risk of CRC [OR = 0.4497, (95% CI 0.2215, 0.9131) P = 0.031] for an individual with at least one A allele at this locus. (1) The XPC C/A (i11) genotype is associated with an increased risk of sporadic colorectal cancer. (2) The NER pathway has been highlighted in our study, as a most important in modulation of individual susceptibility to sCRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zlobec I, Lugli A (2008) Prognostic predictive factors in colorectal cancer. Postgrad Med J 84(994):403–411

    Article  PubMed  CAS  Google Scholar 

  2. Martinez SR, Young SE, Hoedema RE, Foshag LJ, Bilchik AJ (2006) Colorectal cancer screening and surveillance: current standards and future trends. Ann Surg Oncol 13(6):768–775

    Article  PubMed  Google Scholar 

  3. Mohrenweiser HW, Jones IM (1998) Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res 400(1–2):15–24

    PubMed  CAS  Google Scholar 

  4. Labianca R, Beretta G, Gatta G, de Braud F, Wils J (2004) Colon cancer. Crit Rev Oncol Hematol 51(2):145–170

    Article  PubMed  Google Scholar 

  5. Fortini P, Pascucci B, Parlanti E, D’Errico M, Simonelli V, Dogliotti E (2003) The base excision repair: mechanisms and its relevance for cancer susceptibility. Biochimie 85(11):1053–1071

    Article  PubMed  CAS  Google Scholar 

  6. Sterpone S, Cozzi R (2010) Influence of XRCC1 genetic polymorphisms on ionizing radiation-induced DNA damage and repair. J Nucl Acids 25. doi:10.4061/2010/780369

  7. Bravard A, Vacher M, Moritz E, Vaslin L, Hall J, Epe B, Radicella JP (2009) Oxidation status of human OGG1–S326C polymorphic variant determines cellular DNA repair capacity. Cancer Res 69(8):3642–3649

    Article  PubMed  CAS  Google Scholar 

  8. Hung RJ, Hall J, Brennan P, Boffetta P (2005) Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review. Am J Epidemiol 162(10):925–942

    Article  PubMed  Google Scholar 

  9. Stanczyk M, Sliwinski T, Cuchra M, Zubowska M, Bielecka-Kowalska A, Kowalski M et al (2011) The association of polymorphisms in DNA base excision repair genes XRCC1, OGG1 and MUTYH with the risk of childhood acute lymphoblastic leukemia. Mol Biol Rep 38(1):445–451

    Article  PubMed  CAS  Google Scholar 

  10. Moreno V, Gemignani F, Landi S, Gioia-Patricola L, Chabrier A, Blanco I, González S, Guino E, Capellà G, Canzian F (2006) Polymorphisms in genes of nucleotide and base excision repair: risk and prognosis of colorectal cancer. Clin Cancer Res 12(7 pt 1):2101–2108

    Article  PubMed  CAS  Google Scholar 

  11. Engin AB, Karahalil B, Engin A, Karakaya AE (2010) Oxidative stress, Helicobacter pylori, and OGG1 Ser326Cys, XPC Lys939Gln, and XPD Lys751Gln polymorphisms in a Turkish population with colorectal carcinoma. Genet Test Mol Biomark 14(4):559–564

    Article  CAS  Google Scholar 

  12. Vodicka P, Kumar R, Stetina R, Sanyal S, Soucek P, Haufroid V et al (2004) Genetic polymorphisms in DNA repair genes and possible links with DNA repair rates, chromosomal aberrations and single-strand breaks in DNA. Carcinogenesis 25(5):757–763

    Article  PubMed  CAS  Google Scholar 

  13. Abdel-Rahman SZ, El-Zein RA (2000) The 399Gln polymorphism in the DNA repair gene XRCC1 modulates the genotoxic response induced in human lymphocytes by the tobacco-specific nitrosamine NNK. Cancer Lett 159(1):63–71

    Article  PubMed  CAS  Google Scholar 

  14. Berndt SI, Huang WY, Fallin MD, Helzlsouer KJ, Platz EA, Weissfeld JL et al (2007) Genetic variation in base excision repair genes and the prevalence of advanced colorectal adenoma. Cancer Res 67(3):1395–1404

    Article  PubMed  CAS  Google Scholar 

  15. Skjelbred CF, Saebø M, Wallin H, Nexø BA, Hagen PC, Lothe IM et al (2006) Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study. BMC Cancer 6:67

    Article  PubMed  Google Scholar 

  16. Wang J, Zhao Y, Jiang J, Gajalakshmi V, Kuriki K, Nakamura S et al (2010) Polymorphisms in DNA repair genes XRCC1, XRCC3 and XPD, and colorectal cancer risk: a case-control study in an Indian population. J Cancer Res Clin Oncol 136(10):1517–1525

    Article  PubMed  CAS  Google Scholar 

  17. Wang B, Wang D, Huang G, Zhang C, Xu DH, Zhou W (2010) XRCC1 polymorphisms and risk of colorectal cancer: a meta-analysis. Int J Colorectal Dis 25(3):313–321

    Article  PubMed  Google Scholar 

  18. Jelonek K, Gdowicz-Klosok A, Pietrowska M, Borkowska M, Korfanty J et al (2010) Association between single-nucleotide polymorphisms of selected genes involved in the response to DNA damage and risk of colon, head and neck, and breast cancers in a Polish population. J Appl Genet 51(3):343–352

    Article  PubMed  CAS  Google Scholar 

  19. Sugasawa K (2010) Regulation of damage recognition in mammalian global genomic nucleotide excision repair. Mutat Res 685(1–2):29–37

    PubMed  CAS  Google Scholar 

  20. Butkiewicz D, Popanda O, Risch A, Edler L, Dienemann H, Schulz V et al (2004) Association between the risk for lung adenocarcinoma and a (−4) G-to-A Polymorphism in the XPA gene. Cancer Epidemiol Biomark Prev 13(12):2242–2246

    CAS  Google Scholar 

  21. Wu X, Zhao H, Wei Q, Amos CI, Zhang K, Guo Z et al (2003) XPA polymorphism associated with reduced lung cancer risk and a modulating effect on nucleotide excision repair capacity. Carcinogenesis 24(3):505–509

    Article  PubMed  CAS  Google Scholar 

  22. Hansen RD, Sørensen M, Tjønneland A, Overvad K, Wallin H, Raaschou-Nielsen O et al (2007) XPA A23G, XPC Lys939Gln, XPD Lys751Gln and XPD Asp312Asn polymorphisms, interactions with smoking, alcohol and dietary factors, and risk of colorectal cancer. Mutat Res 619(1–2):68–80

    PubMed  CAS  Google Scholar 

  23. Khan SG, Metter EJ, Tarone RE, Bohr VA, Grossman L, Hedayati M, Bale SJ, Emmert S, Kraemer KH (2000) A new xeroderma pigmentosum group C poly(AT) insertion/deletion polymorphism. Carcinogenesis 21(10):1821–1825

    Article  PubMed  CAS  Google Scholar 

  24. Marin MS, Lopez-Cima MF, Garcia-Castro L, Pascual T, Marron M, Tardon A (2004) Poly (AT) polymorphism in intron 11 of the XPC DNA repair gene enhances the risk of lung cancer. Cancer Epidemiol Biomark Prev 13(11):1788–1792

    CAS  Google Scholar 

  25. Sanyal S, Festa F, Sakano S, Zhang Z, Steineck G, Norming U et al (2004) Polymorphism in DNA repair and metabolic genes in bladder cancer. Carcinogenesis 25(5):729–734

    Article  PubMed  CAS  Google Scholar 

  26. Stern MC, Johnson LR, Bell DA, Taylor JA (2002) XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk. Cancer Epidemiol Biomark Prev 11(10 pt 1):1004–1011

    CAS  Google Scholar 

  27. Sliwinski T, Krupa R, Wisniewska-Jarosinska M, Pawlowska E, Lech J, Chojnacki J, Blasiak J (2009) Common polymorphisms in the XPD and hOGG1 genes are not associated with the risk of colorectal cancer in a Polish population. Tohoku J Exp Med 218(3):185–191

    Article  PubMed  CAS  Google Scholar 

  28. Gillet LC, Schärer OD (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair. Chem Rev 106(2):253–276

    Article  PubMed  CAS  Google Scholar 

  29. Smith TR, Levine EA, Perrier ND, Miller MS, Freimanis RI, Lohman K et al (2003) DNA-repair genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomark Prev 12(11 pt 1):1200–1204

    CAS  Google Scholar 

  30. McWilliams RR, Bamlet WR, Cunningham JM, Goode EL, de Andrade M, Boardman LA et al (2008) Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res 68(12):4928–4935

    Article  PubMed  CAS  Google Scholar 

  31. Zienolddiny S, Campa D, Lind H, Ryberg D, Skaug V, Stangeland L et al (2006) Polymorphisms of DNA repair genes and risk of non-small cell lung cancer. Carcinogenesis 27(3):560–567

    Article  PubMed  CAS  Google Scholar 

  32. Jeon HS, Kim KM, Park SH, Lee SY, Choi JE, Lee GY et al (2003) Relationship between XPG codon 1104 polymorphism and risk of primary lung cancer. Carcinogenesis 24(10):1677–1681

    Article  PubMed  CAS  Google Scholar 

  33. Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M (2004) Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24(21):9305–9316

    Article  PubMed  CAS  Google Scholar 

  34. Giunta S, Belotserkovskaya R, Jackson SP (2010) DNA damage signaling in response to double-strand breaks during mitosis. J Cell Biol 190(2):197–207

    Article  PubMed  CAS  Google Scholar 

  35. Lu J, Wei Q, Bondy ML, Li D, Brewster A, Shete S et al (2006) Polymorphisms and haplotypes of the NBS1 gene are associated with risk of sporadic breast cancer in non-Hispanic white women <or=55 years. Carcinogenesis 27(11):2209–2216

    Article  PubMed  CAS  Google Scholar 

  36. Pardini B, Naccarati A, Novotny J, Smerhovsky Z, Vodickova L, Polakova V et al (2008) DNA repair genetic polymorphisms and risk of colorectal cancer in the Czech Republic. Mutat Res 638(1–2):146–153

    PubMed  CAS  Google Scholar 

  37. Matullo G, Guarrera S, Carturan S, Peluso M, Malaveille C, Davico L et al (2001) DNA repair gene polymorphisms, bulky DNA adducts in white blood cells and bladder cancer in a case-control study. Int J Cancer 92(4):562–567

    Article  PubMed  CAS  Google Scholar 

  38. Smith TR, Miller MS, Lohman K, Lange EM, Case LD, Mohrenweiser HW et al (2003) Polymorphisms of XRCC1 and XRCC3 genes and susceptibility to breast cancer. Cancer Lett 190(2):183–190

    Article  PubMed  CAS  Google Scholar 

  39. Stern MC, Siegmund KD, Corral R, Haile RW (2005) XRCC1 and XRCC3 polymorphisms and their role as effect modifiers of unsaturated fatty acids and antioxidant intake on colorectal adenomas risk. Cancer Epidemiol Biomark Prev 14(3):609–615

    Article  CAS  Google Scholar 

  40. Jacobsen NR, Raaschou-Nielsen O, Nexø B, Wallin H, Overvad K, Tjønneland A et al (2004) XRCC3 polymorphisms and risk of lung cancer. Cancer Lett 213(1):67–72

    Article  PubMed  CAS  Google Scholar 

  41. Winsey SL, Haldar NA, Marsh HP, Bunce M, Marshall SE, Harris AL et al (2000) A variant within the DNA repair gene XRCC3 is associated with the development of melanoma skin cancer. Cancer Res 60(20):5612–5616

    PubMed  CAS  Google Scholar 

  42. Krupa R, Sobczuk A, Popławski T, Wozniak K, Blasiak J (2010) DNA damage and repair in endometrial cancer in correlation with the hOGG1 and RAD51 genes polymorphism. Mol Biol Rep 38(2):1163–1170

    Article  PubMed  Google Scholar 

  43. Antoniou AC, Sinilnikova OM, Simard J, Léoné M, Dumont M, Neuhausen SL et al (2007) RAD51 135G → C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81(6):1186–1200

    Article  PubMed  CAS  Google Scholar 

  44. Krupa R, Sliwinski T, Wisniewska-Jarosinska M, Chojnacki J, Wasylecka M, Dziki L, Morawiec J, Blasiak J (2010) Polymorphisms in RAD51, XRCC2 and XRCC3 genes of the homologous recombination repair in colorectal cancer-a case control study. Mol Biol Rep 38:2849–2854

    Article  PubMed  Google Scholar 

  45. Laczmanska I, Gil J, Karpinski P, Stembalska A, Trusewicz A, Pesz K et al (2007) Polymorphism in nucleotide excision repair gene XPC correlates with bleomycin-induced chromosomal aberrations. Environ Mol Mutagen 48(8):666–671

    Article  PubMed  CAS  Google Scholar 

  46. Le Marchand L, Donlon T, Lum-Jones A, Seifried A, Wilkens LR (2002) Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomark Prev 11(4):409–412

    CAS  Google Scholar 

  47. Excoffier L, Slatkin M (1995) Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 12(5):921–927

    PubMed  CAS  Google Scholar 

  48. Zhang D, Chen C, Fu X, Gu S, Mao Y, Xie Y et al (2008) A meta-analysis of DNA repair gene XPC polymorphisms and cancer risk. J Hum Genet 53(1):18–33

    Article  PubMed  CAS  Google Scholar 

  49. Bignold LP, Coghlan BL, Jersmann HP (2006) Cancer morphology, carcinogenesis and genetic instability: a background. EXS 96:1–24

    PubMed  CAS  Google Scholar 

  50. Qiu L, Wang Z, Shi X, Wang Z (2008) Associations between XPC polymorphisms and risk of cancers: a meta-analysis. Eur J Cancer 44(15):2241–2253

    Article  PubMed  CAS  Google Scholar 

  51. Yasuda G, Nishi R, Watanabe E, Mori T, Iwai S, Orioli D, Stefanini M, Hanaoka F, Sugasawa K (2007) In vivo destabilization and functional defects of the xeroderma pigmentosum C protein caused by a pathogenic missense mutation. Mol Cell Biol 27(19):6606–6614

    Article  PubMed  CAS  Google Scholar 

  52. Khan SG, Muniz-Medina V, Shahlavi T, Baker CC, Inui H, Ueda T et al (2002) The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucl Acids Res 30(16):362

    Article  Google Scholar 

  53. López-Cima MF, González-Arriaga P, García-Castro L, Pascual T, Marrón MG, Puente XS et al (2007) Polymorphisms in XPC, XPD, XRCC1, and XRCC3 DNA repair genes and lung cancer risk in a population of northern Spain. BMC Cancer 7:162

    Article  PubMed  Google Scholar 

  54. Huang WY, Berndt SI, Kang D, Chatterjee N, Chanock SJ, Yeager M et al (2006) Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk. Cancer Epidemiol Biomark Prev 15(2):306–311

    Article  CAS  Google Scholar 

  55. García-Closas M, Malats N, Real FX, Welch R, Kogevinas M, Chatterjee N et al (2006) Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomark Prev 15(3):536–542

    Article  Google Scholar 

  56. Shen H, Sturgis EM, Khan SG, Qiao Y, Shahlavi T, Eicher SA et al (2001) An intronic poly (AT) polymorphism of the DNA repair gene XPC and risk of squamous cell carcinoma of the head and neck: a case-control study. Cancer Res 61(8):3321–3325

    PubMed  CAS  Google Scholar 

  57. Kazimírová A, Barancoková M, Dzupinková Z, Wsólová L, Dusinská M (2009) Micronuclei and chromosomal aberrations, important markers of ageing: possible association with XPC and XPD polymorphisms. Mutat Res 661(1–2):35–40

    PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by the State Committee for Scientific Research, Polish Ministry for Scientific Research and Information Technology (Grant no. 1423/P01/2007/32), 2007–2010. David Ramsey is supported by Science Foundation Ireland (SFI) as part of the BIO-SI project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justyna Gil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gil, J., Ramsey, D., Stembalska, A. et al. The C/A polymorphism in intron 11 of the XPC gene plays a crucial role in the modulation of an individual’s susceptibility to sporadic colorectal cancer. Mol Biol Rep 39, 527–534 (2012). https://doi.org/10.1007/s11033-011-0767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0767-5

Keywords

Navigation