Skip to main content
Log in

Effect of gestational protein deficiency and excess on hepatic expression of genes related to cell cycle and proliferation in offspring from late gestation to finishing phase in pig

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Maternal diet during gestation is known to affect offspring phenotype induction. In the present study the influence of maternal protein restriction and excess during gestation on offspring candidate gene expression was analysed. German Landrace gilts were fed control, low protein (LP) or high protein (HP) diet throughout gestation (n = 18 per diet group). After birth piglets were cross-fostered and lactated by control diet fed nursing sows. Samples of offspring liver tissue were taken at foetal, newborn, weaning and finishing phase (n = 16, respectively). Transcript amount of selected candidate genes related to cell cycle and cell proliferation was estimated by quantitative real-time PCR. Maternal protein restriction influenced gene expression of candidate genes CCND2, GADD45B, GALK1, GSTP1, MARCKS, MGMT, NEAT1, PSEN1, SNX1 and TRPM7 in liver from foetuses, newborn piglets, weaned and/or finisher pigs. In the offspring of mothers fed a HP diet expression of target genes was affected exclusively in finisher pigs showing increased transcript amount of CCND2, GALK1, MARCKS, SNX1 and TRPM7. The results of the present study clearly show a long-lasting impact of the maternal protein supply during gestation on offspring candidate genes. Remarkably, effects of gestational HP diet became evident in finisher pigs while LP supply already alters genes expression in foetal tissue. Thus it is suggested that LP and HP supply affect the offspring in utero by different physiological mechanisms with the consequence of late effects in case of prenatal protein excess in contrast to early effects in case of protein restriction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Lucas A (1991) Programming by early nutrition in man. Ciba Found Symp 156:38–50

    PubMed  CAS  Google Scholar 

  2. Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1:1077–1081

    Article  PubMed  CAS  Google Scholar 

  3. Lucas A (1994) Role of nutritional programming in determining adult morbidity. Arch Dis Child 71:288–290

    Article  PubMed  CAS  Google Scholar 

  4. Langley-Evans SC, Bellinger L, McMullen S (2005) Animal models of programming: early life influences on appetite and feeding behaviour. Matern Child Nutr 1:142–148

    Article  PubMed  Google Scholar 

  5. Mortensen OH, Olsen HL, Frandsen L, Nielsen PE, Nielsen FC, Grunnet N, Quistorff B (2010) Gestational protein restriction in mice has pronounced effects on gene expression in newborn offspring’s liver and skeletal muscle; protective effect of taurine. Pediatr Res 67:47–53

    Article  PubMed  CAS  Google Scholar 

  6. Liu JB, Chen DW, Yu B, Mao XB (2011) Effect of maternal folic acid supplementation on hepatic one-carbon unit associated gene expressions in newborn piglets. Mol Biol Rep 38:3849–3856

    Article  PubMed  CAS  Google Scholar 

  7. Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Board-invited review: intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  PubMed  CAS  Google Scholar 

  8. Ashworth CJ, Finch AM, Page KR, Nwagwu MO, McArdle HJ (2001) Causes and consequences of fetal growth retardation in pigs. Reprod Suppl 58:233–246

    PubMed  CAS  Google Scholar 

  9. Bond CS, Fox AH (2009) Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol 186:637–644

    Article  PubMed  CAS  Google Scholar 

  10. Holley SL, Fryer AA, Haycock JW, Grubb SE, Strange RC, Hoban PR (2007) Differential effects of glutathione S-transferase pi (GSTP1) haplotypes on cell proliferation and apoptosis. Carcinogenesis 28:2268–2273

    Article  PubMed  CAS  Google Scholar 

  11. Janicki SM, Monteiro MJ (1999) Presenilin overexpression arrests cells in the G1 phase of the cell cycle. Arrest potentiated by the Alzheimer’s disease PS2(N141I)mutant. Am J Pathol 155:135–144

    Article  PubMed  CAS  Google Scholar 

  12. Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187

    Article  PubMed  CAS  Google Scholar 

  13. Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL (2005) The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 280:37763–37771

    Article  PubMed  CAS  Google Scholar 

  14. Vairapandi M, Balliet AG, Hoffman B, Liebermann DA (2002) GADD45b and GADD45 g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J Cell Physiol 192:327–338

    Article  PubMed  CAS  Google Scholar 

  15. Yamato K, Koseki T, Ohguchi M, Kizaki M, Ikeda Y, Nishihara T (1997) Activin A induction of cell-cycle arrest involves modulation of cyclin D2 and p21CIP1/WAF1 in plasmacytic cells. Mol Endocrinol 11:1044–1052

    Article  PubMed  CAS  Google Scholar 

  16. Yan L, Donze JR, Liu L (2005) Inactivated MGMT by O6-benzylguanine is associated with prolonged G2/M arrest in cancer cells treated with BCNU. Oncogene 24:2175–2183

    Article  PubMed  CAS  Google Scholar 

  17. Youdim MB, Maruyama W, Naoi M (2005) Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiparkinsonian drug, rasagiline. Drugs Today (Barc) 41:369–391

    Article  CAS  Google Scholar 

  18. Ai Y, Basu M, Bergsma DJ, Stambolian D (1995) Comparison of the enzymatic activities of human galactokinase GALK1 and a related human galactokinase protein GK2. Biochem Biophys Res Commun 212:687–691

    Article  PubMed  CAS  Google Scholar 

  19. Altmann S, Murani E, Schwerin M, Metges CC, Wimmers K, Ponsuksili S (2011) Somatic cytochrome c (CYCS) gene expression and promoter-specific DNA methylation in a porcine model of prenatal exposure to maternal dietary protein excess and restriction. Br J Nutr 1:1–9

    Google Scholar 

  20. Rehfeldt C, Lefaucheur L, Block J, Stabenow B, Pfuhl R, Otten W, Metges CC, Kalbe C (2011) Limited and excess protein intake of pregnant gilts differently affects body composition and cellularity of skeletal muscle and subcutaneous adipose tissue of newborn and weanling piglets. Eur J Nutr. doi:10.1007/s00394-011-0201-8

  21. Rehfeldt C, Lang IS, Gors S, Hennig U, Kalbe C, Stabenow B, Brussow KP, Pfuhl R, Bellmann O, Nurnberg G, Otten W, Metges CC (2011) Limited and excess dietary protein during gestation affects growth and compositional traits in gilts and impairs offspring fetal growth. J Anim Sci 89:329–341

    Article  PubMed  CAS  Google Scholar 

  22. Wu G, Pond WG, Ott T, Bazer FW (1998) Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J Nutr 128:894–902

    PubMed  CAS  Google Scholar 

  23. Rehfeldt C, Stabenow B, Pfuhl R, Block J, Nurnberg G, Otten W, Metges CC, Kalbe C (2011) Effects of limited and excess protein intakes of pregnant gilts on carcass quality and cellular properties of skeletal muscle and subcutaneous adipose tissue in fattening pigs. J Anim Sci 90:184–196

    Google Scholar 

  24. Vandesompele J, De PK, Pattyn F, Poppe B, Van RN, De PA, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11

    Google Scholar 

  25. Kovanen PE, Young L, Al-Shami A, Rovella V, Pise-Masison CA, Radonovich MF, Powell J, Fu J, Brady JN, Munson PJ, Leonard WJ (2005) Global analysis of IL-2 target genes: identification of chromosomal clusters of expressed genes. Int Immunol 17:1009–1021

    Article  PubMed  CAS  Google Scholar 

  26. Nelson BH, Martyak TP, Thompson LJ, Moon JJ, Wang T (2003) Uncoupling of promitogenic and antiapoptotic functions of IL-2 by Smad-dependent TGF-beta signaling. J Immunol 170:5563–5570

    PubMed  CAS  Google Scholar 

  27. Marzec M, Halasa K, Kasprzycka M, Wysocka M, Liu X, Tobias JW, Baldwin D, Zhang Q, Odum N, Rook AH, Wasik MA (2008) Differential effects of interleukin-2 and interleukin-15 versus interleukin-21 on CD4+ cutaneous T-cell lymphoma cells. Cancer Res 68:1083–1091

    Article  PubMed  CAS  Google Scholar 

  28. Porayette P, Gallego MJ, Kaltcheva MM, Bowen RL, Vadakkadath MS, Atwood CS (2009) Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells. J Biol Chem 284:23806–23817

    Article  PubMed  CAS  Google Scholar 

  29. Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24:7707–7717

    Article  PubMed  CAS  Google Scholar 

  30. Nakai M, Hojo K, Yagi K, Saito N, Taniguchi T, Terashima A, Kawamata T, Hashimoto T, Maeda K, Gschwendt M, Yamamoto H, Miyamoto E, Tanaka C (1999) Amyloid beta protein (25–35) phosphorylates MARCKS through tyrosine kinase-activated protein kinase C signaling pathway in microglia. J Neurochem 72:1179–1186

    Article  PubMed  CAS  Google Scholar 

  31. Annaert WG, Levesque L, Craessaerts K, Dierinck I, Snellings G, Westaway D, George-Hyslop PS, Cordell B, Fraser P, De SB (1999) Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J Cell Biol 147:277–294

    Article  PubMed  CAS  Google Scholar 

  32. Fluhrer R, Friedlein A, Haass C, Walter J (2004) Phosphorylation of presenilin 1 at the caspase recognition site regulates its proteolytic processing and the progression of apoptosis. J Biol Chem 279:1585–1593

    Article  PubMed  CAS  Google Scholar 

  33. Gandy S, Czernik AJ, Greengard P (1988) Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca2+/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 85:6218–6221

    Article  PubMed  CAS  Google Scholar 

  34. Li Y, Martin LD, Spizz G, Adler KB (2001) MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J Biol Chem 276:40982–40990

    Article  PubMed  CAS  Google Scholar 

  35. Lo HW, Antoun GR, Li-Osman F (2004) The human glutathione S-transferase P1 protein is phosphorylated and its metabolic function enhanced by the Ser/Thr protein kinases, cAMP-dependent protein kinase and protein kinase C, in glioblastoma cells. Cancer Res 64:9131–9138

    Article  PubMed  CAS  Google Scholar 

  36. Srivenugopal KS, Mullapudi SR, Shou J, Hazra TK, Li-Osman F (2000) Protein phosphorylation is a regulatory mechanism for O6-alkylguanine-DNA alkyltransferase in human brain tumor cells. Cancer Res 60:282–287

    PubMed  CAS  Google Scholar 

  37. Landman N, Jeong SY, Shin SY, Voronov SV, Serban G, Kang MS, Park MK, Di PG, Chung S, Kim TW (2006) Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc Natl Acad Sci USA 103:19524–19529

    Article  PubMed  CAS  Google Scholar 

  38. Runnels LW, Yue L, Clapham DE (2002) The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol 4:329–336

    PubMed  CAS  Google Scholar 

  39. Das T, Sa G, Ray PK (1999) Mechanisms of protein A superantigen-induced signal transduction for proliferation of mouse B cell. Immunol Lett 70:43–51

    Article  PubMed  CAS  Google Scholar 

  40. Kim SW, Hurley WL, Wu G, Ji F (2009) Ideal amino acid balance for sows during gestation and lactation. J Anim Sci 87:E123–E132

    Article  PubMed  CAS  Google Scholar 

  41. McPherson RL, Ji F, Wu G, Blanton JR Jr, Kim SW (2004) Growth and compositional changes of fetal tissues in pigs. J Anim Sci 82:2534–2540

    PubMed  CAS  Google Scholar 

  42. Leem JY, Vijayan S, Han P, Cai D, Machura M, Lopes KO, Veselits ML, Xu H, Thinakaran G (2002) Presenilin 1 is required for maturation and cell surface accumulation of nicastrin. J Biol Chem 277:19236–19240

    Article  PubMed  CAS  Google Scholar 

  43. Liu SC, Bassi DE, Zhang SY, Holoran D, Conti CJ, Klein-Szanto AJ (2002) Overexpression of cyclin D2 is associated with increased in vivo invasiveness of human squamous carcinoma cells. Mol Carcinog 34:131–139

    Article  PubMed  Google Scholar 

  44. Nijland MJ, Schlabritz-Loutsevitch NE, Hubbard GB, Nathanielsz PW, Cox LA (2007) Non-human primate fetal kidney transcriptome analysis indicates mammalian target of rapamycin (mTOR) is a central nutrient-responsive pathway. J Physiol 579:643–656

    Article  PubMed  CAS  Google Scholar 

  45. Martin B, Pearson M, Brenneman R, Golden E, Wood W, Prabhu V, Becker KG, Mattson MP, Maudsley S (2009) Gonadal transcriptome alterations in response to dietary energy intake: sensing the reproductive environment. PLoS ONE 4:e4146

    Article  PubMed  Google Scholar 

  46. Brait M, Ford JG, Papaiahgari S, Garza MA, Lee JI, Loyo M, Maldonado L, Begum S, McCaffrey L, Howerton M, Sidransky D, Emerson MR, Ahmed S, Williams CD, Hoque MO (2009) Association between lifestyle factors and CpG island methylation in a cancer-free population. Cancer Epidemiol Biomark Prev 18:2984–2991

    Article  CAS  Google Scholar 

  47. Duthie SJ, Grant G, Pirie LP, Watson AJ, Margison GP (2010) Folate deficiency alters hepatic and colon MGMT and OGG-1 DNA repair protein expression in rats but has no effect on genome-wide DNA methylation. Cancer Prev Res (Phila) 3:92–100

    Article  CAS  Google Scholar 

  48. Kliegman RM, Sparks JW (1985) Perinatal galactose metabolism. J Pediatr 107:831–841

    Article  PubMed  CAS  Google Scholar 

  49. Grigor MR, Allan JE, Carrington JM, Carne A, Geursen A, Young D, Thompson MP, Haynes EB, Coleman RA (1987) Effect of dietary protein and food restriction on milk production and composition, maternal tissues and enzymes in lactating rats. J Nutr 117:1247–1258

    PubMed  CAS  Google Scholar 

  50. Qiu J, Cheng R, Zhou XY, Zhu JG, Zhu C, Qin DN, Kou CZ, Guo XR (2010) Gene expression profiles of adipose tissue of high-fat diet-induced obese rats by cDNA microarrays. Mol Biol Rep 37:3691–3695

    Article  PubMed  CAS  Google Scholar 

  51. Bieswal F, Ahn MT, Reusens B, Holvoet P, Raes M, Rees WD, Remacle C (2006) The importance of catch-up growth after early malnutrition for the programming of obesity in male rat. Obesity (Silver Spring) 14:1330–1343

    Article  CAS  Google Scholar 

  52. Bol VV, Reusens BM, Remacle CA (2008) Postnatal catch-up growth after fetal protein restriction programs proliferation of rat preadipocytes. Obesity (Silver Spring) 16:2760–2763

    Article  Google Scholar 

  53. Rehfeldt C, Kalbe C, Block J, Nürnberg G, Stabenow B, Metges CC (2008) Long-term effects of low and high protein feeding to pregnant sows on offspring at market weight. Proceedings of 54th international congress of meat science and technology 7B.15

  54. Fox AH, Lamond AI (2010) Paraspeckles. Cold Spring Harb Perspect Biol 2:a000687

    Article  PubMed  Google Scholar 

  55. Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109

    Article  PubMed  Google Scholar 

  56. Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322:756–760

    Article  PubMed  CAS  Google Scholar 

  57. Inoue K, Xiong ZG (2009) Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res 83:547–557

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work originates from the project “Epigenetic mechanisms” and is part of the joint research project “FEPROeXPRESS” under the framework of the FUGATOplus funding initiative by the German Federal Ministry of Education and Research (FKZ 0315132A; Bundesministerium für Bildung und Forschung, BMBF, Germany). The authors gratefully acknowledge all people who take part in designing of the animal study. We are grateful for the excellent assistance with sample collection to the technical staff of the research units ‘Nutritional Physiology’, ‘Muscle Biology and Growth’, and ‘Behavioural Physiology’, ‘Molecular Biology’ (all Leibniz Institute for Farm Animal Biology).

Conflict of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siriluck Ponsuksili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altmann, S., Murani, E., Metges, C.C. et al. Effect of gestational protein deficiency and excess on hepatic expression of genes related to cell cycle and proliferation in offspring from late gestation to finishing phase in pig. Mol Biol Rep 39, 7095–7104 (2012). https://doi.org/10.1007/s11033-012-1541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1541-z

Keywords

Navigation