Skip to main content
Log in

Isolation and analysis of genes mainly expressed in adult mouse heart using subtractive hybridization cDNA library

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Subtractive hybridization cDNA library (SHL) is one of the powerful approaches for isolating differentially expressed genes. Using this technique between mouse heart and skeletal muscle (skm) tissues, we aimed to construct a cDNA-library that was specific to heart tissue and to identify the potential candidate genes that might be responsible for the development of cardiac diseases or related pathophysiological conditions. In the first step of the study, we created a cDNA-library between mouse heart and skm tissues. The homologies of the randomly selected 215 clones were analyzed and then classified by function. A total of 146 genes were analyzed for their expression profiles in the heart and skm tissues in published mouse microarray dataset. In the second step, we analyzed the expression patterns of the selected genes by Northern blot and RNA in situ hybridization (RISH). In Northern blot analyses, the expression levels of Myl3, Myl2, Mfn2, Dcn, Pdlim4, mt-Co3, mt-Co1, Atpase6 and Tsc22d1 genes were higher in heart than skm. For first time with this study, expression patterns of Pdlim4 and Tsc22d1 genes in mouse heart and skm were shown by RISH. In the last step, 43 genes in this library were identified to have relationships mostly with cardiac diseases and/or related phenotypes. This is the first study reporting differentially expressed genes in healthy mouse heart using SHL technique. This study confirms our hypothesis that tissue-specific genes are most likely to have a disease association, if they possess mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hara E, Yamaguchi T, Tahara H, Tsuyama N, Tsurui H, Ide T, Oda K (1993) DNA–DNA subtractive cDNA cloning using oligo(dT)30-Latex and PCR: identification of cellular genes which are overexpressed in senescent human diploid fibroblasts. Anal Biochem 214:58–64. doi:10.1006/abio.1993.1456

    Article  PubMed  CAS  Google Scholar 

  2. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  3. von Stein OD, Thies WG, Hofmann M (1997) A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res 25:2598–2602

    Article  Google Scholar 

  4. Kozian DH, Kirschbaum BJ (1999) Comparative gene-expression analysis. Trends Biotechnol 17:73–78. doi:10.1016/S0167-7799(98)01292-X

    Article  PubMed  CAS  Google Scholar 

  5. Suzuki Y, Sato N, Tohyama M, Wanaka A, Takagi T (1996) Efficient isolation of differentially expressed genes by means of a newly established method, ‘ESD’. Nucleic Acids Res 24:797–799

    Article  PubMed  CAS  Google Scholar 

  6. Pathak RU, Kanungo MS (2007) Subtractive differential display: a modified differential display technique for isolating differentially expressed genes. Mol Biol Rep 34:41–46. doi:10.1007/s11033-006-9010-1

    Article  PubMed  CAS  Google Scholar 

  7. Wouters M, De Laet A, Donck LV, Delpire E, van Bogaert PP, Timmermans JP, de Kerchove d’Exaerde A, Smans K, Vanderwinden JM (2006) Subtractive hybridization unravels a role for the ion cotransporter NKCC1 in the murine intestinal pacemaker. Am J Physiol Gastrointest Liver Physiol 290:G1219–G1227. doi:10.1152/ajpgi.00032

    Article  PubMed  CAS  Google Scholar 

  8. Zhang H, Zhou L, Yang R, Sheng Y, Sun W, Kong X, Cao K (2006) Identification of differentially expressed genes in human heart with ventricular septal defect using suppression subtractive hybridization. Biochem Biophys Res Commun 342:135–144. doi:10.1016/j.bbrc.2006.01.113

    Article  PubMed  CAS  Google Scholar 

  9. Liang G, Zhang XD, Wang LJ, Sha YS, Zhang JC, Miao SY, Zong SD, Wang LF, Koide SS (2004) Identification of differentially expressed genes of primary spermatocyte against round spermatid isolated from human testis using the laser capture microdissection technique. Cell Res 14:507–512. doi:10.1038/sj.cr.7290254

    Article  PubMed  CAS  Google Scholar 

  10. Lee SW, Tomasetto C, Sager R (1991) Positive selection of candidate tumor-suppressor genes by subtractive hybridization. Proc Natl Acad Sci USA 88:2825–2829

    Article  PubMed  CAS  Google Scholar 

  11. Morozov G, Verlinsky O, Rechitsky S, Ivakhnenko V, Goltsman E, Gindilis V, Strom C, Kuliev A, Verlinsky Y (1999) Construction and analysis of subtraction complementary DNA libraries from human preimplantation embryos. J Assisr Reprod Genet 16:212–215. doi:10.1023/A:1020368908134

    Article  CAS  Google Scholar 

  12. Stanton LW (2001) Methods to profile gene expression. Trends Cardiovasc Med 11:49–54. doi:10.1016/S1050-1738(01)00085-8

    Article  PubMed  CAS  Google Scholar 

  13. Nanni L, Romualdi C, Maseri A, Lanfranchi G (2006) Differential gene expression profiling in genetic and multifactorial cardiovascular diseases. J Mol Cell Cardiol 41:934–948. doi:10.1016/j.yjmcc.2006.08.009

    Article  PubMed  CAS  Google Scholar 

  14. Wang Z, Liu Y, Liu J, Liu K, Wen J, Wen S, Wu Z (2011) HSG/Mfn2 gene polymorphism and essential hypertension: a case–control association study in Chinese. J Atheroscler Thromb 18:24–31

    Article  PubMed  Google Scholar 

  15. Bolling MC, Pas HH, de Visser M, Aronica E, Pfendner EG, van den Berg MP, Diercks GF, Suurmeijer AJ, Jonkman MF (2010) PLEC1 mutations underlie adult-onset dilated cardiomyopathy in epidermolysis bullosa simplex with muscular dystrophy. J Invest Dermatol 130:1178–1181. doi:10.1038/jid.2009.390

    Article  PubMed  CAS  Google Scholar 

  16. Levitas A, Muhammad E, Harel G, Saada A, Caspi VC, Manor E, Beck JC, Sheffield V, Parvari R (2010) Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur J Hum Genet 18:1160–1165. doi:10.1038/ejhg.2010.83

    Article  PubMed  CAS  Google Scholar 

  17. Zaragoza MV, Brandon MC, Diegoli M, Arbustini E, Wallace DC (2011) Mitochondrial cardiomyopathies: how to identify candidate pathogenic mutations by mitochondrial DNA sequencing, MITOMASTER and phylogeny. Eur J Hum Genet 19:200–207. doi:10.1038/ejhg.2010.169

    Article  PubMed  CAS  Google Scholar 

  18. Chen J, Hattori Y, Nakajima K, Eizawa T, Ehara T, Koyama M, Hirai T, Fukuda Y, Kinoshita M, Sugiyama A, Hayashi J, Onaya T, Kobayashi T, Tawata M (2006) Mitochondrial complex I activity is significantly decreased in a patient with maternally inherited type 2 diabetes mellitus and hypertrophic cardiomyopathy associated with mitochondrial DNA C3310T mutation: a cybrid study. Diabetes Res Clin Pract 74:148–153. doi:10.1016/j.diabres.2006.03.024

    Article  PubMed  CAS  Google Scholar 

  19. Zifa E, Theotokis P, Kaminari A, Maridaki H, Leze H, Petsiava E, Mamuris Z, Stathopoulos C (2008) A novel G3337A mitochondrial ND1 mutation related to cardiomyopathy co-segregates with tRNALeu(CUN) A12308G and tRNAThr C15946T mutations. Mitochondrion 8:229–236. doi:10.1016/j.mito.2008.04.001

    Article  PubMed  CAS  Google Scholar 

  20. Chamkha I, Mkaouar-Rebai E, Aloulou H, Chabchoub I, Kifagi C, Fendri-Kriaa N, Kammoun T, Hachicha M, Fakhfakh F (2011) A novel m.3395A>G missense mutation in the mitochondrial ND1 gene associated with the new tRNA(Ile) m.4316A>G mutation in a patient with hypertrophic cardiomyopathy and profound hearing loss. Biochem Biophys Res Commun 404:504–510. doi:10.1016/j.bbrc.2010.12.012

    Article  PubMed  CAS  Google Scholar 

  21. Tang S, Batra A, Zhang Y, Ebenroth ES, Huang T (2010) Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion 10:350–357. doi:10.1016/j.mito.2010.02.003

    Article  PubMed  CAS  Google Scholar 

  22. Zhu HY, Wang SW, Martin LJ, Liu L, Li YH, Chen R, Wang L, Zhang ML, Benson DW (2009) The role of mitochondrial genome in essential hypertension in a Chinese Han population. Eur J Hum Genet 17:1501–1506. doi:10.1038/ejhg.2009.63

    Article  PubMed  CAS  Google Scholar 

  23. Tang Z, Diamond MA, Chen JM, Holly TA, Bonow RO, Dasgupta A, Hyslop T, Purzycki A, Wagner J, McNamara DM, Kukulski T, Wos S, Velazquez EJ, Ardlie K, Feldman AM (2007) Polymorphisms in adenosine receptor genes are associated with infarct size in patients with ischemic cardiomyopathy. Clin Pharmacol Ther 82:435–440. doi:10.1038/sj.clpt.6100331

    Article  PubMed  CAS  Google Scholar 

  24. Yamada Y, Kato K, Oguri M, Fujimaki T, Yokoi K, Matsuo H, Watanabe S, Metoki N, Yoshida H, Satoh K, Ichihara S, Aoyagi Y, Yasunaga A, Park H, Tanaka M, Nozawa Y (2008) Genetic risk for myocardial infarction determined by polymorphisms of candidate genes in a Japanese population. J Med Genet 45:216–221. doi:10.1136/jmg.2007.054387

    Article  PubMed  CAS  Google Scholar 

  25. Omura T, Yoshiyama M, Yoshida K, Nakamura Y, Kim S, Iwao H, Takeuchi K, Yoshikawa J (2002) Dominant negative mutant of c-Jun inhibits cardiomyocyte hypertrophy induced by endothelin 1 and phenylephrine. Hypertension 9:1–6. doi:10.1161/hy0102.100783

    Google Scholar 

  26. Shastry S, Delgado MR, Dirik E, Turkmen M, Agarwal AK, Garg A (2010) Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am J Med Genet A 152A:2245–2253. doi:10.1002/ajmg.a.33578

    Article  PubMed  CAS  Google Scholar 

  27. Desai PP, Bunker CH, Ukoli FA, Kamboh MI (2002) Genetic variation in the apolipoprotein D gene among African blacks and its significance in lipid metabolism. Atherosclerosis 163:329–338. doi:10.1016/S0021-9150(02)00012-6

    Article  PubMed  CAS  Google Scholar 

  28. Iolascon A, De Falco L, Borgese F, Esposito MR, Avvisati RA, Izzo P, Piscopo C, Guizouarn H, Biondani A, Pantaleo A, De Franceschi L (2009) A novel erythroid anion exchange variant (Gly796Arg) of hereditary stomatocytosis associated with dyserythropoiesis. Haematologica 94:1049–1059. doi:10.3324/haematol.2008.002873

    Article  PubMed  CAS  Google Scholar 

  29. Karst ML, Herron KJ, Olson TM (2008) X-linked nonsyndromic sinus node dysfunction and atrial fibrillation caused by emerin mutation. J Cardiovasc Electrophysiol 19:510–515. doi:10.1111/j.1540-8167.2007.01081.x

    Article  PubMed  Google Scholar 

  30. Rebrikov DV, Britanova OV, Gurskaya NG, Lukyanov KA, Lukyanov SA (2000) Mirror orientation selection (MOS): a method for eliminating false positive clones from libraries generated by suppression subtractive hybridization. Nucleic Acids Res 28:E90

    Article  PubMed  CAS  Google Scholar 

  31. Ohta S, Shimekake Y, Nagata K (1996) Molecular cloning and characterization of a transcription factor for the C-type natriuretic peptide gene promoter. Eur J Biochem 242:460–466. doi:10.1111/j.1432-1033.1996.460rr.x

    Article  PubMed  CAS  Google Scholar 

  32. Kiess M, Scharm B, Aguzzi A, Hajnal A, Klemenz R, Schwarte-Waldhoff I, Schäfer R (1995) Expression of ril, a novel LIM domain gene, is down-regulated in Hras-transformed cells and restored in phenotypic revertants. Oncogene 10:61–68

    PubMed  CAS  Google Scholar 

  33. Arola AM, Sanchez X, Murphy RT, Hasle E, Li H, Elliott PM, McKenna WJ, Towbin JA, Bowles N (2007) Mutations in PDLIM3 and MYOZ1 encoding myocyte Z line proteins are infrequently found in idiopathic dilated cardiomyopathy. Mol Genet Metab 90:435–440. doi:10.1016/j.ymgme.2006.12.008

    Article  PubMed  CAS  Google Scholar 

  34. Pashmforoush M, Pomiès P, Peterson KL, Kubalak S, Ross J Jr, Hefti A, Aebi U, Beckerle MC, Chien KR (2001) Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat Med 7:591–597. doi:10.1038/87920

    Article  PubMed  CAS  Google Scholar 

  35. Chen CL, Lin JL, Lai LP, Pan CH, Huang SK, Lin CS (2007) Altered expression of FHL1, CARP, TSC-22 and P311 provide insights into complex transcriptional regulation in pacing-induced atrial fibrillation. Biochim Biophys Acta 1772:317–329. doi:10.1016/j.bbadis.2006.10.017

    PubMed  CAS  Google Scholar 

  36. Haase D, Lehmann MH, Körner MM, Körfer R, Sigusch HH, Figulla HR (2002) Identification and validation of selective upregulation of ventricular myosin light chain type 2 mRNA in idiopathic dilated cardiomyopathy. Eur J Heart Fail 4:23–31. doi:10.1016/S1388-9842(01)00226-4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Sema Bilgic (PhD) and Mehves Poda (PhD) for their contributions in the application of RISH technique also Neslihan Coban (PhD student) for her contributions in selections of positive clones from cDNA library and isolations of plasmid DNA. This study was supported by State Planning Organization of Turkey and Scientific Research Projects Coordination Unit of Istanbul University (Project numbers: T–1062/19022001, T–901/02062006, BYP-3135, ACIP-3107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihan Erginel-Unaltuna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_1653_MOESM1_ESM.doc

Supplementary Table 1 (Online Resource 1). The determinations of differential expressed genes in heart according to skeletal muscle using published mouse microarray dataset in GEO database. Supplementary material 1 (DOC 355 kb)

11033_2012_1653_MOESM2_ESM.doc

Supplementary Table 2 (Online Resource 2). The detailed information of the probes in Northern Blot and RISH techniques. Supplementary material 2 (DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komurcu-Bayrak, E., Ozsait, B. & Erginel-Unaltuna, N. Isolation and analysis of genes mainly expressed in adult mouse heart using subtractive hybridization cDNA library. Mol Biol Rep 39, 8065–8074 (2012). https://doi.org/10.1007/s11033-012-1653-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1653-5

Keywords

Navigation