Skip to main content

Advertisement

Log in

Ubiquitin- and ubiquitin-like proteins-conjugating enzymes (E2s) in breast cancer

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Breast cancer is the most common malignancy in women and a significant cause of morbidity and mortality. Sub-types of breast cancer defined by the expression of steroid hormones and Her2/Neu oncogene have distinct prognosis and undergo different therapies. Besides differing in their phenotype, sub-types of breast cancer display various molecular lesions that participate in their pathogenesis. BRCA1 is one of the common hereditary cancer predisposition genes and encodes for an ubiquitin ligase. Ubiquitin ligases or E3 enzymes participate together with ubiquitin activating enzyme and ubiquitin conjugating enzymes in the attachment of ubiquitin (ubiquitination) in target proteins. Ubiquitination is a post-translational modification regulating multiple cell functions. It also plays important roles in carcinogenesis in general and in breast carcinogenesis in particular. Ubiquitin conjugating enzymes are a central component of the ubiquitination machinery and are often perturbed in breast cancer. This paper will discuss ubiquitin and ubiquitin-like proteins conjugating enzymes participating in breast cancer pathogenesis, their relationships with other proteins of the ubiquitination machinery and their role in phenotype of breast cancer sub-types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harbeck N, Salem M, Nitz U, Gluz O, Liedtke C (2010) Personalized treatment of early-stage breast cancer: present concepts and future directions. Cancer Treat Rev 36:584–594

    Article  PubMed  Google Scholar 

  2. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010) Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol 11:174–183

    Article  PubMed  CAS  Google Scholar 

  3. Groettrup M, Pelzer C, Schmidtke G, Hofmann K (2008) Activating the ubiquitin family: UBA6 challenges the field. Trends Biochem Sci 33:230–237

    Article  PubMed  CAS  Google Scholar 

  4. Metzger MB, Hristova VA, Weissman AM (2012) HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci 125:531–537

    Article  PubMed  CAS  Google Scholar 

  5. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429

    Article  PubMed  CAS  Google Scholar 

  6. Voutsadakis IA (2010) Ubiquitin, ubiquitination and the ubiquitin-proteasome system in cancer. Atlas Genet Cytogen Oncol Haematol http://AtlasGeneticsOncologyorg/Deep/UbiquitinCancerID20083.httml

  7. Kirkin V, Dikic I (2011) Ubiquitin networks in cancer. Curr Opin Genet Dev 21:21–28

    Article  PubMed  CAS  Google Scholar 

  8. Behrends C, Harper JW (2011) Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol 18:520–528

    Article  PubMed  CAS  Google Scholar 

  9. Michelle C, Vourc’h P, Mignon L, Andres CR (2009) What was the set of ubiquitin and ubiquitin-like conjugating enzymes in the eukaryote common ancestor? J Mol Evol 68(616):628

    Google Scholar 

  10. Huang DT, Hunt HW, Zhuang M, Ohi MD, Holton JM, Schulman BA (2007) Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity. Nature 445:394–398

    Article  PubMed  CAS  Google Scholar 

  11. Wenzel DM, Stoll KE, Klevit RE (2011) E2 s: structurally economical and functionally replete. Biochem J 433:31–42

    Article  PubMed  CAS  Google Scholar 

  12. Eddins MJ, Pickart CM (2005) Ubiquitin-conjugating enzymes. In: Mayer J, Ciechanover A, Rechsteiner M (eds) Protein degradation, vol 1. Wiley-VCH Verlag, Weinheim, pp 102–134

    Chapter  Google Scholar 

  13. Van Wijk SJL, Timmers HTM (2010) The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J 24:981–993

    Article  PubMed  CAS  Google Scholar 

  14. Li W, Ye Y (2008) Polyubiquitin chains: functions, structures, and mechanisms. Cell Mol Life Sci 65:2397–2406

    Article  PubMed  CAS  Google Scholar 

  15. Tokgöz Z, Siepmann TJ, Streich F Jr, Kumar B, Klein JM, Haas AL (2012) E1–E2 interactions in ubiquitin and Nedd8 ligation pathways. J Biol Chem 287:311–321

    Article  PubMed  CAS  Google Scholar 

  16. Hochstrasser M (2006) Lingering mysteries of ubiquitin-chain assembly. Cell 124:27–34

    Article  PubMed  Google Scholar 

  17. Zheng N, Wang P, Jeffrey PD, Pavletich NP (2000) Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–539

    Article  PubMed  CAS  Google Scholar 

  18. Huang DT, Kinnucan E, Wang G, Baudenon S, Howley PM, Huibregtse JM, Pavletich NP (1999) Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2–E3 enzyme cascade. Science 286:1321–1326

    Article  PubMed  CAS  Google Scholar 

  19. Praefcke GJK, Hofmann K, Dohmen RJ (2012) SUMO playing tag with ubiquitin. Trends Biochem Sci 37:23–31

    Article  PubMed  CAS  Google Scholar 

  20. Anderson DD, Eom JY, Stover PJ (2012) Competition between Sumoylation and Ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. J Biol Chem 287:4790–4799

    Article  PubMed  CAS  Google Scholar 

  21. Karamouzis MV, Konstantinopoulos PA, Badra FA, Papavassiliou AG (2008) SUMO and estrogen receptors in breast cancer. Breast Cancer Res Treat 107:195–210

    Article  PubMed  CAS  Google Scholar 

  22. Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir J-M, Corbo L (2011) Cracking the estrogen receptor’s posttranslational code in breast tumors. Endocrine Rev 32:597–622

    Article  CAS  Google Scholar 

  23. Sentis S, Le Romancer M, Bianchin C, Rostan M-C, Corbo L (2006) Sumoylation of the estrogen receptor α hinge region regulates its transcriptional activity. Mol Endocrinol 19:2671–2684

    Article  CAS  Google Scholar 

  24. Li S, Yang C, Hong Y, Bi H, Zhao F, Liu Y, Ao X, Pang P, Xing X, Chang AK, Xiao L, Zhang Y, Wu H (2012) The transcriptional activity of co-activator AIB1 is regulated by the SUMO E3 ligase PIAS1. Biol Cell 104:1–10

    Article  CAS  Google Scholar 

  25. Turner N, Tutt A, Ashworth A (2004) Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer 4:1–6

    Article  Google Scholar 

  26. Foulkes WD (2010) Traffic control by BRCA1. New Engl J Med 362:755–756

    Article  PubMed  CAS  Google Scholar 

  27. Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A, Butler L, Galanty Y, Pangon L, Kiuchi T, Ng T, Solomon E (2009) The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462:886–890

    Article  PubMed  CAS  Google Scholar 

  28. Kim H, Chen J, Yu X (2007) Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316:1202–1205

    Article  PubMed  CAS  Google Scholar 

  29. Yan J, Yang X-P, Kim Y-S, Joo JH, Jetten AM (2007) RAP80 interacts with the SUMO-conjugating enzyme UBC9 and is a novel target for sumoylation. Biochem Biophys Res Commun 362:132–138

    Article  PubMed  CAS  Google Scholar 

  30. Wang B (2012) BRCA1 tumor suppressor network: focusing on its tail. Cell Biosci 2:6

    Article  PubMed  CAS  Google Scholar 

  31. Xu J, Watkins T, Reddy A, Reddy ESP, Rao VN (2009) A novel mechanism whereby BRCA1/1a/1b fine tunes the dynamic complex interplay between SUMO-dependent/independent activities of Ubc9 on E2-induced ERα activation/repression and degradation in breast cancer cells. Int J Oncol 34:939–949

    PubMed  CAS  Google Scholar 

  32. Ma Y, Fan S, Hu C, Meng Q, Fuqua SA, Pestell RG, Tomita YA, Rosen EM (2010) BRCA1 regulates acetylation and ubiquitination of estrogen receptor-α. Mol Endocrinol 24:76–90

    Article  PubMed  CAS  Google Scholar 

  33. Qin Y, Xu J, Aysola K, Begum N, Reddy V, Chai Y, Grizzle WE, Partridge EE, Reddy ESP, Rao VN (2011) Ubc9 mediates nuclear localization and growth suppression of BRCA1 and BRCA1a proteins. J Cell Physiol 226:3355–3367

    Article  PubMed  CAS  Google Scholar 

  34. Woeller CF, Anderson DD, Szebenyi DME, Stover PJ (2007) Evidence for small ubiquitin-like modifier-dependent nuclear import of the thymidylate biosynthesis pathway. J Biol Chem 282:17623–17631

    Article  PubMed  CAS  Google Scholar 

  35. Palczewska M, Casafont I, Ghimire K, Rojas AM, Valencia A, Lafarga M, Mellström B, Naranjo JR (2011) Sumoylation regulates nuclear localization of repressor DREAM. Biochim Biophys Acta 1813:1050–1058

    Article  PubMed  CAS  Google Scholar 

  36. Deng H, Lin Y, Badin M, Vasilcanu D, Strömberg T, Jernberg-Wiklund H, Sehat B, Larsoon O (2011) Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9. Biochem Biophys Res Commun 404:667–671

    Article  PubMed  CAS  Google Scholar 

  37. Sehat B, Tofigh A, Lin Y, Trocmé E, Liljedahl U, Lagergren J, Larsson O (2010) SUMOylation mediates the nuclear translocation and signalling of the IGF-1 receptor. Sci Signal 3:ra10

    Article  PubMed  CAS  Google Scholar 

  38. Park MA, Seok Y-J, Jeong G, Lee J-S (2008) SUMO1 negatively regulates BRCA1-mediated transcription, via modulation of promoter occupancy. Nucleic Acids Res 36:263–283

    Article  PubMed  CAS  Google Scholar 

  39. Chauhan D, Bianchi G, Anderson KC (2008) Targeting the UPS as therapy in multiple myeloma. BMC Biochem 9(Suppl 1):S1

    Article  PubMed  CAS  Google Scholar 

  40. Liu Q, Li J, Khoury J, Colgan SP, Ibla JC (2009) Adenosine signalling mediates SUMO-1 modification of IκBα during hypoxia and reoxygenation. J Biol Chem 284:13686–13695

    Article  PubMed  CAS  Google Scholar 

  41. Shifera AS (2010) Protein-protein interactions involving IKKγ (NEMO) that promote the activation of NF-Κb. J Cell Physiol 223:558–561

    PubMed  CAS  Google Scholar 

  42. Zhou Y, Eppenberger-Castori S, Eppenberger U, Benz CC (2005) The NF-κB pathway and endocrine-resistant breast cancer. Endocr Relat Cancer 12:S37–S46

    Article  PubMed  CAS  Google Scholar 

  43. Montagut C, Tusquets I, Ferrer B, Corominas JM, Bellosillo B, Campas C, Suarez M, Febregat X, Campo E, Gascon P, Serrano S, Fernandez PL, Rovira A, Albanell J (2006) Activation of nuclear factor-κ B is linked to resistance to neoadjuvant chemotherapy in breast cancer patients. Endocr Relat Cancer 13:607–616

    Article  PubMed  CAS  Google Scholar 

  44. Buchholz TA, Garg AK, Chakravarti N, Aggarwal BB, Esteva FJ, Kuerer HM, Singletary SE, Hortobagyi GN, Pusztai L, Cristofanilli M, Sahin AA (2005) The nuclear transcription factor κB/bcl-2 pathway correlates with pathologic complete response to doxorubicin-based neoadjuvant chemotherapy in human breast cancer. Clin Cancer Res 11:8398–8402

    Article  PubMed  CAS  Google Scholar 

  45. Jones RL, Rojo F, A’Hern R, Villena N, Salter J, Corominas JM, Servitja S, Smith IE, Rovira A, Reis-Filho JS, Dowsett M, Albanell J (2011) Nuclear NF-κB/p65 expression and response to neoadjuvant chemotherapy in breast cancer. J Clin Pathol 64:130–135

    Article  PubMed  Google Scholar 

  46. Perkins ND (2012) The diverse and complex roles of NF-κB subunits in cancer. Nat Rev Cancer 12:121–132

    PubMed  CAS  Google Scholar 

  47. Shostak K, Chariot A (2011) NF-κB, stem cells and breast cancer: the links get stronger. Breast Cancer Res 13:214

    Article  PubMed  Google Scholar 

  48. Yu F, Deng H, Yao H, Liu Q, Su F, Song E (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29:4194–4204

    Article  PubMed  CAS  Google Scholar 

  49. Zhu S, Sachdeva M, Wu F, Lu Z, Mo Y-Y (2010) Ubc9 promotes breast cell invasion and metastasis in a sumoylation-independent manner. Oncogene 29:1763–1772

    Article  PubMed  CAS  Google Scholar 

  50. Guo Y, Yang M-CW, Weissler JC, Yang Y-S (2008) Modulation of PLAGL2 transactivation activity by Ubc9 co-activation not SUMOylation. Biochem Biophys Res Commun 374:570–575

    Article  PubMed  CAS  Google Scholar 

  51. Chen S-F, Gong C, Luo M, Yao H-R, Zeng Y-J, Su F-X (2011) Ubc9 expression predicts chemoresistance in breast cancer. Chin J Cancer 30:638–644

    Article  PubMed  CAS  Google Scholar 

  52. Bremm A, Komander D (2011) Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends Biochem Sci 36:355–363

    PubMed  CAS  Google Scholar 

  53. Castro A, Vigneron S, Lorca T, Labbé J-C (2003) La mitose sous surveillance. Med Sci 19:309–317

    Google Scholar 

  54. Matyskiela ME, Morgan DO (2009) Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Mol Cell 34:68–80

    Article  PubMed  CAS  Google Scholar 

  55. Song L, Rape M (2011) Substrate-specific regulation of ubiquitination by the anaphase-promoting complex. Cell Cycle 10:52–56

    Article  PubMed  CAS  Google Scholar 

  56. Wickliffe KE, Williamson A, Meyer H-J, Kelly A, Rape M (2011) K11-linked ubiquitin chains as novel regulators of cell division. Trends Cell Biol 21:656–663

    Article  PubMed  CAS  Google Scholar 

  57. Mocciaro A, Rape M (2012) Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control. J Cell Sci 125:255–263

    Article  PubMed  CAS  Google Scholar 

  58. Okamoto Y, Ozaki T, Miyazaki K, Aoyama M, Miyazaki M, Nakagawara A (2003) UbcH10 is the cancer-related E2 ubiquitin-conjugating enzyme. Cancer Res 63:4167–4173

    PubMed  CAS  Google Scholar 

  59. van Ree JH, Jeganathan KB, Malureanu L, van Deursen JM (2010) Overexpression of the E2 ubiquitin-conjugating enzyme UbcH10 causes chromosome missegregation and tumor formation. J Cell Biol 188:83–100

    Article  PubMed  CAS  Google Scholar 

  60. Wagner KW, Sapinoso LM, El-Rifai W, Frierson HF Jr, Butz N, Mestan J, Hofmann F, Deveraux QL, Hampton GM (2004) Overexpression, genomic amplification and therapeutic potential of inhibiting the UbcH10 ubiquitin conjugase in human carcinomas of diverse anatomic origin. Oncogene 23:6621–6629

    Article  PubMed  CAS  Google Scholar 

  61. Fujita T, Ikeda H, Kawasaki K, Taira N, Ogasawara Y, Nakagawara A, Doihara H (2009) Clinicopathological relevance of UbcH10 in breast cancer. Cancer Sci 100:238–248

    Article  PubMed  CAS  Google Scholar 

  62. Berlingieri MT, Pallante P, Sboner A, Barbareschi M, Bianco M, Ferraro A, Mansueto G, Borbone E, Guerriero E, Troncone G, Fusco A (2007) UbcH10 is overexpressed in malignant breast carcinomas. Eur J Cancer 43:2729–2735

    Article  PubMed  CAS  Google Scholar 

  63. Psyrri A, Kalogeras KT, Kronenwett R, Wirtz RM, Batistatou A, Bournakis E, Timotheadou E, Gogas H, Aravantinos G, Christodoulou C, Makatsoris T, Linardou H, Pectasides D, Pavlidis N, Economopoulos T, Foutzilas G (2012) Prognostic significance of UBE2C mRNA expression in high-risk early breast cancer. A Hellenic Cooperative Oncology Group (HeCOG) study. Ann Oncol 23:1422–1427

    Article  PubMed  CAS  Google Scholar 

  64. Loussouarn D, Campion L, Leclair F, Campone M, Charbonnel C, Ricolleau G, Gouraud W, Bataille R, Jezéquel P (2009) Validation of UBE2C protein as a prognostic marker in node-positive breast cancer. Br J Cancer 101:166–173

    Article  PubMed  CAS  Google Scholar 

  65. Tedesco D, Zhang J, Trinh L, Lalehzadeh G, Meisner R, Yamaguchi KD, Ruderman DL, Dinter H, Zajchowski DA (2007) The ubiquitin-conjugating enzyme E2-EPF is overexpressed in primary breast cancer and modulates sensitivity to topoisomerase II inhibition. Neoplasia 9:601–613

    Article  PubMed  CAS  Google Scholar 

  66. Wu-Baer F, Lagrazon K, Yuan W, Baer R (2003) The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 278:34743–34746

    Article  PubMed  CAS  Google Scholar 

  67. Polanowska J, Martin JS, Garcia-Muse T, Petalcorin MIR, Boulton SJ (2006) A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites. EMBO J 25:2178–2188

    Article  PubMed  CAS  Google Scholar 

  68. Mittal MK, Singh K, Misra S, Chaudhuri G (2011) SLUG-induced elevation of D1 cyclin in breast cancer cells through the inhibition of its ubiquitination. J Biol Chem 286:469–479

    Article  PubMed  CAS  Google Scholar 

  69. Wang C, Fan S, Li Z, Fu M, Rao M, Ma Y, Lisanti MP, Albanese C, Katzenellenbogen BS, Kushner PJ, Weber B, Rosen EM, Pestell RG (2005) Cyclin D1 antagonizes BRCA1 repression of estrogen receptor α activity. Cancer Res 65:6557–6567

    Article  PubMed  CAS  Google Scholar 

  70. Chen L, Madura K (2005) Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 65:5599–5606

    Article  PubMed  CAS  Google Scholar 

  71. Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon J-C, Woods YL, Lane DP (2004) Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 279:42169–42181

    Article  PubMed  CAS  Google Scholar 

  72. Gonen H, Bercovich B, Orian A, Carrano A, Takizawa C, Yamanaka K, Pagano M, Iwai K, Ciechanover A (1999) Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation and subsequent degradation of IκBα. J Biol Chem 274:14823–14830

    Article  PubMed  CAS  Google Scholar 

  73. Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467

    Article  PubMed  CAS  Google Scholar 

  74. Lyakhovich A, Shekhar MPV (2004) RAD6B overexpression confers chemoresistance: RAD6 expression during cell cycle and its redistribution to chromatin during DNA damage-induced response. Oncogene 23:3097–3106

    Article  PubMed  CAS  Google Scholar 

  75. Shekhar MPV, Gerard B, Pauley RJ, Williams BO, Tait L (2008) Rad6B is a positive regulator of β-catenin stabilization. Cancer Res 68:1741–1750

    Article  PubMed  CAS  Google Scholar 

  76. Voutsadakis IA (2012) The ubiquitin–proteasome system and signal transduction pathways regulating epithelial mesenchymal transition of cancer. J Biomed Sci 19:67

    Article  PubMed  CAS  Google Scholar 

  77. Shekhar MPV, Tait L, Gerard B (2006) Essential role of T-cell factor/β-catenin in regulation of Rad6B: a potential mechanism for Rad6B overexpression in breast cancer cells. Mol Cancer Res 4:729–745

    Article  PubMed  CAS  Google Scholar 

  78. Gerard B, Tait L, Nangia-Makker P, Shekhar MPV (2011) Rad6B acts downstream of Wnt signaling to stabilize β-catenin: implications for a novel Wnt/β-catenin target. J Mol Signal 6:6

    Article  PubMed  CAS  Google Scholar 

  79. Chen S, Wang D-L, Liu Y, Zhao L, Sun F-L (2012) RAD6 regulates the dosage of p53 by a combination of transcriptional and posttranscriptional mechanisms. Mol Cell Biol 32:576–587

    Article  PubMed  CAS  Google Scholar 

  80. Kumar B, LeCompte KG, Klein JM, Haas AL (2010) Ser120 of Ubc2/Rad6 regulates ubiquitin-dependent N-end rule targeting by E3α/Ubr1. J Biol Chem 285:41300–41309

    Article  PubMed  CAS  Google Scholar 

  81. Perry ME (2010) The regulation of the p53-mediated stress response by MDM2 and MDM4. Cold Spring Harb Perspect Biol 2:a000968

    Article  PubMed  Google Scholar 

  82. Shekhar MPV, Biernat LA, Pernick N, Tait L, Abrams J, Visscher DW (2010) Utility of DNA postreplication repair protein Rad6B in neoadjuvant chemotherapy response. Med Oncol 27:466–473

    Article  PubMed  CAS  Google Scholar 

  83. Waite KA, Eng C (2003) BMP2 exposure results in decreased PTEN protein degradation and increased PTEN levels. Hum Mol Genet 12:679–684

    Article  PubMed  CAS  Google Scholar 

  84. Verma S, Ismail A, Gao X, Fu G, Li X, O’Malley BW, Nawaz Z (2004) The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol Cell Biol 24:8716–8726

    Article  PubMed  CAS  Google Scholar 

  85. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D III, Fukuda M, Ohta T, Klevit R (2003) Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci USA 100:5646–5651

    Article  PubMed  CAS  Google Scholar 

  86. Whitcomb EA, Taylor A (2009) Ubiquitin control of S phase: a new role for the ubiquitin conjugating enzyme, UbcH7. Cell Div 4:17

    Article  PubMed  CAS  Google Scholar 

  87. Zhang D, Zhang D-E (2011) Interferon-stimulated gene 15 and the protein ISGylation system. J Interf Cytok Res 31:119–130

    Article  CAS  Google Scholar 

  88. Desai SD, Haas AL, Wood LM, Tsai Y-C, Pestka S, Rubin EH, Saleem A, Nur-E-Kamal A, Liu LF (2006) Elevated expression of ISG 15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res 66:921–928

    Article  PubMed  CAS  Google Scholar 

  89. Bektas N, Noetzel E, Veeck J, Press MF, Kristiansen G, Naami A, Hartmann A, Dimmler A, Beckmann MW, Knüchel R, Fasching PA, Dahl E (2008) The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer. Breast Cancer Res 10:R58

    Article  PubMed  CAS  Google Scholar 

  90. Desai SD, Reed RE, Burks J, Wood LM, Pullikuth AK, Haas AL, Liu LF, Breslin JW, Meiners S, Sankar S (2012) ISG15 disrupts cytoskeletal architecture and promotes motility in human breast cancer cells. Exp Biol Med 237:38–49

    Article  CAS  Google Scholar 

  91. Malakhov MP, Kim KI, Malakhova OA, Jacobs BS, Borden EC, Zhang DE (2003) High-throughput immunoblotting. Ubiquitin-like protein ISG15 modifies key regulators of signal transduction. J Biol Chem 278:16608–16613

    Article  PubMed  CAS  Google Scholar 

  92. Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, Kim KI, Peterson LF, Shuai K, Zhang DE (2003) Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev 17:455–460

    Article  PubMed  CAS  Google Scholar 

  93. Desai SD, Wood LM, Tsai Y-C, Hsieh T-S, Marks JR, Scott GL, Giovanella BC, Liu LF (2008) ISG15 as a novel tumor biomarker for drug sensitivity. Mol Cancer Ther 7:1430–1439

    Article  PubMed  CAS  Google Scholar 

  94. Tripathi MK, Chaudhuri G (2005) Down-regulation of UCRP and UBE2L6 in BRCA2 knocked-down human breast cells. Biochem Biophys Res Commun 328:43–48

    Article  PubMed  CAS  Google Scholar 

  95. Lopergolo A, Pennati M, Gandellini P, Orlotti NI, Poma P, Daidone MG, Folini M, Zaffaroni N (2009) Apollon gene silencing induces apoptosis in breast cancer cells through p53 stabilization and caspase-3 activation. Br J Cancer 100:739–746

    Article  PubMed  CAS  Google Scholar 

  96. Ren J, Shi M, Liu R, Yang Q-H, Johnson T, Skarnes WC, Du C (2005) The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc Natl Acad Sci USA 102:565–570

    Article  PubMed  CAS  Google Scholar 

  97. Hao Y, Sekine K, Kawabata A, Nakamura H, Ishioka T, Ohata H, Katayama R, Hashimoto C, Zhang X, Noda T, Tsuruo T, Naito M (2004) Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol 6:849–860

    Article  PubMed  CAS  Google Scholar 

  98. Pohl C, Jentsch S (2008) Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132:832–845

    Article  PubMed  CAS  Google Scholar 

  99. Ueki T, Park J-H, Nishidate T, Kijima K, Hirata K, Nakamura Y, Katagiri T (2009) Ubiquitination and downregulatio of BRCA1 by ubiquitin conjugating enzyme E2T overexpression in human breast cancer cells. Cancer Res 69:8752–8760

    Article  PubMed  CAS  Google Scholar 

  100. Kawakami T, Chiba T, Suzuki T, Iwai K, Yamanaka K, Minato N, Suzuki H, Shimbara N, Hidaka Y, Osaka F, Omata M, Tanaka K (2001) NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J 20:4003–4012

    Article  PubMed  CAS  Google Scholar 

  101. Fan M, Bigsby RM, Nephew KP (2003) The NEDD8 pathway is required for proteasome-mediated degradation of human estrogen receptor (ER)-α and essential for the antiproliferative activity of ICI 182,780 in ERα-positive breast cancer cells. Mol Endocrinol 17:356–365

    Article  PubMed  CAS  Google Scholar 

  102. Nikseresht M, Seghatoleslam A, Monabati A, Talei A, Ghalati FB, Owji AA (2010) Overexpression of the novel human gene, UBE2Q2, in breast cancer. Cancer Genet Cytogenet 197:101–106

    Article  PubMed  CAS  Google Scholar 

  103. Seghatoleslam A, Nikseresht M, Shafiee SM, Monabati A, Namavari M, Talei A, Safaei A, Owji AA (2012) Expression of the novel human gene, UBE2Q1, in breast tumors. Mol Biol Rep 39:5135–5141

    Article  PubMed  CAS  Google Scholar 

  104. Seghatoleslam A, Zambrano A, Million R, Ganguli G, Argentini M, Cromer A, Abecassis J, Wasylyk B (2006) Analysis of a novel human gene, LOC92912, over-expressed in hypopharyngeal tumours. Biochem Biophys Res Commun 339:422–429

    Article  PubMed  CAS  Google Scholar 

  105. Hosey AM, Gorski JJ, Murray MM, Quinn JE, Chung WY, Stewart GE, James CR, Farragher SM, Mulligan JM, Scott AN, Dervan PA, Johnston PG, Couch FJ, Daly PA, Kay E, McCann A, Mullan PB, Harkin DP (2007) Molecular basis for estrogen receptor α deficiency in BRCA1-linked breast cancer. J Natl Cancer Inst 99:1683–1694

    Article  PubMed  CAS  Google Scholar 

  106. Gorski JJ, James CR, Quinn JE, Stewart GE, Crosbie Staunton K, Buckley NE, McDyer FA, Kennedy RD, Wilson RH, Mullan PB, Harkin DP (2010) BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Res Treat 122:721–731

    Article  PubMed  CAS  Google Scholar 

  107. Bonéy-Montoya J, Ziegler YS, Curtis CD, Montoya JA, Nardulli AM (2010) Long-range transcriptional control of progesterone receptor gene expression. Mol Endocrinol 24:346–358

    Article  PubMed  CAS  Google Scholar 

  108. Katiyar P, Ma Y, Riegel A, Fan S, Rosen EM (2009) Mechanism of BRCA1-mediated inhibition of progesterone receptor transcriptional activity. Mol Endocrinol 23:1135–1146

    Article  PubMed  CAS  Google Scholar 

  109. Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, Hanada R, Joshi PA, Aliprantis A, Glimcher L, Pasparakis M, Khokha R, Ormandy CJ, Widschwendter M, Schett G, Penninger JM (2010) Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468:98–102

    Article  PubMed  CAS  Google Scholar 

  110. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, Pinkas J, Branstetter D, Dougall WC (2010) RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature 468:103–107

    Article  PubMed  CAS  Google Scholar 

  111. Al Saleh S, Al Mulla F, Luqmani YA (2011) Estrogen receptor silencing induces epithelial to mesenchymal transition in human breast cancer cells. PLoS ONE 6:e20610

    Article  PubMed  CAS  Google Scholar 

  112. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, Chalbos D, Sonenshein GE (2007) Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 9:470–478

    Article  PubMed  CAS  Google Scholar 

  113. Martins FC, De S, Almendro V, Gönen M, Park SY, Blum JL, Herlihy W, Ethington G, Schnitt SJ, Tung N, Garber JE, Fetten K, Michor F, Polyak K (2012) Evolutionary pathways in BRCA1-associated breast tumors. Cancer Discov 2:503–511

    Article  PubMed  CAS  Google Scholar 

  114. Wickenden JA, Watson CJ (2010) Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts. Breast Cancer Res 12:202

    Article  PubMed  CAS  Google Scholar 

  115. Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin CY, Stanculescu A (2009) Positive cross-talk between estrogen receptor and NF-kappaB in breast cancer. Cancer Res 89:8918–8925

    Article  CAS  Google Scholar 

  116. Kisselev AF, van der Linden WA, Overkleeft HS (2012) Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol 19:99–115

    Article  PubMed  CAS  Google Scholar 

  117. Milano A, Perri F, Caponigro F (2009) The ubiquitin-proteasome system as a molecular target in solid tumors: an update on bortezomib. OncoTargets Ther 2:171–178

    CAS  Google Scholar 

  118. Cao B, Mao X (2011) The ubiquitin-proteasomal system is critical for multiple myeloma: implications in drug discovery. Am J Blood Res 1:46–56

    PubMed  CAS  Google Scholar 

  119. Powers GL, Ellison-Zelski SJ, Casa AJ, Lee AV, Alarid ET (2010) Proteasome inhibition represses ERα gene expression in ER+ cells: a new link between proteasome activity and estrogen signaling in breast cancer. Oncogene 29:1509–1518

    Article  PubMed  CAS  Google Scholar 

  120. Wang M, Medeiros BC, Erba HP, DeAngelo DJ, Giles FJ, Swords RT (2011) Targeting protein neddylation: a novel therapeutic strategy for the treatment of cancer. Expert Opin Ther Targets 15:253–264

    Article  PubMed  CAS  Google Scholar 

  121. Liu G, Xirodimas DP (2010) NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways. Oncogene 29:2252–2261

    Article  PubMed  CAS  Google Scholar 

  122. Broemer M, Tenev T, Rigbolt KTG, Hempel S, Blagoev B, Silke J, Ditzel M, Meier P (2010) Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell 40:810–822

    Article  PubMed  CAS  Google Scholar 

  123. Dickens MP, Fitzgerald R, Fischer PM (2010) Small-molecule inhibitors of MDM2 as a new anticancer therapeutics. Semin Cancer Biol 20:10–18

    Article  PubMed  CAS  Google Scholar 

  124. Ceccarelli DF, Tang X, Pelletier B, Orlicky S, Xie W, Plantevin V, Neculai D, Chou Y-C, Ogunjimi A, Al-Hakim A, Varelas X, Koszela J, Wasney GA, Vedadi M, Dhe-Paganon S, Cox S, Xu S, Lopez-Girona A, Mercurio F, Wrana J, Durocher D, Meloche S, Webb DR, Tyers M, Sicheri F (2011) An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 145:1075–1087

    Article  PubMed  CAS  Google Scholar 

  125. Shiratori T, Shimada H, Kagaya A, Kuboshima M, Nabeya Y, Machida T, Goto K, Takiguchi M, Ochiai T, Hiwasa T (2007) Sensitization against anticancer drugs by transfection with UBE2I variant gene into ras-NIH3H3 mouse fibroblasts. Anticancer Res 27:3227–3234

    PubMed  CAS  Google Scholar 

  126. Zhao M, Vuori K (2011) The docking protein p130Cas regulates cell sensitivity to proteasome inhibition. BMC Biol 9:73

    Article  PubMed  CAS  Google Scholar 

  127. Wong DJ, Nuyten DS, Regev A, Lin M, Adler AS, Segal E, van de Vijver MJ, Chang HY (2008) Revealing targeted therapy for human cancer by gene module maps. Cancer Res 68:369–378

    Article  PubMed  CAS  Google Scholar 

  128. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O’Connor MJ, Ashworth A, Carmichael J, Kaye SB, Schellens JH, de Bono JS (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 361:123–134

    Article  PubMed  CAS  Google Scholar 

  129. Chan DA, Giaccia AJ (2011) Harnessing synthetic lethal interactions in anticancer drug discovery. Nat Rev Drug Discov 10:351–364

    Article  PubMed  CAS  Google Scholar 

  130. Neri P, Ren L, Gratton K, Stebner E, Johnson J, Klimowicz A, Duggan P, Tassone P, Mansoor A, Stewart DA, Lonial S, Boise LH, Bahlis NJ (2011) Bortezomib-induced “BRCAness” sensitizes multiple myeloma cells to PARP inhibitors. Blood 118:6368–6379

    Article  PubMed  CAS  Google Scholar 

  131. Jiang F, Basavappa R (1999) Crystal structure of the cyclin-specific ubiquitin-conjugating enzyme from clam, E2-C, at 2.0 A resolution. Biochemistry 18:6471–6478

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis A. Voutsadakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Voutsadakis, I.A. Ubiquitin- and ubiquitin-like proteins-conjugating enzymes (E2s) in breast cancer. Mol Biol Rep 40, 2019–2034 (2013). https://doi.org/10.1007/s11033-012-2261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2261-0

Keywords

Navigation