Skip to main content
Log in

Side populations from cervical-cancer-derived cell lines have stem-cell-like properties

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The target cells for the transforming mutations caused by high-risk human papillomavirus (HPV) infection could be the stem cells of the uterine cervical epithelium, generating particular cancer stem cells (CSCs). The aim of this study was to identify and characterize the CSCs from cervical-cancer-derived cell lines. The ability of SiHa, CaLo, and C-33A cell lines to efflux Hoechst 33342 was evaluated by flow cytometry and cells from the corresponding side populations (SPs) and nonside populations (NSPs) were analyzed for their cell-cycle status (pyronin Y) and their mRNA levels of ABC transporter family members (with qPCR). Specific markers (α6-integrinbri/CD71dim, CK17) of normal epithelial stem cells were evaluated by flow cytometry. The biological properties of these cells were analyzed, including their colony heterogeneity, repopulation, and anchorage-independent colony formation. We identified SPs (around 3 %) in the SiHa and CaLo cell lines, more than 70 % of which were in G0 phase and strongly expressed ABC transporters (predominantly ABCG2 and ABCB1). The SP from CaLo cells showed an α6-integrinbri/CDdim pattern, whereas the SP from the SiHa cells showed an α6-integrin/CDdim pattern. Recultured cells from the SPs of both cell lines generated both SPs and NSPs, and had higher clonogenic potential to form mainly holoclones and greater colony-forming efficiency under anchorage-independent growth conditions than the cells from the NSPs or total cell populations. Interestingly, we identified no SP in the HPV-uninfected C-33A cell line, and it did not express ABCG2 or other members of the ABC transporters (ABCB1, ABCC1, or ABCA3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SP:

Side population

NSP:

Nonside population

CSCs:

Cancer stem cells

RNA:

Ribonucleic acid

HPV:

Human papillomavirus

DMEM:

Dulbecco’s modified Eagle’s medium

F12:

Nutrient mixture F12

FITC:

Fluorescein isothiocyanate

HEK293:

Human embryonic kidney 293 cells

FBS:

Fetal bovine serum

PE:

Phycoerythrin

PY:

Pyronin Y

qPCR:

Quantitative polymerase chain reaction

RT-qPCR:

Reverse transcription-quantitative PCR

ΔΔCt:

Double delta Ct

References

  1. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011. doi:10.1155/2011/396076

  2. Fulda S, Pervaiz S (2010) Apoptosis signaling in cancer stem cells. Int J Biochem Cell Biol 42(1):31–38. doi:10.1016/j.biocel.2009.06.010

    Article  PubMed  CAS  Google Scholar 

  3. Dekaney CM, Gulati AS, Garrison AP, Helmrath MA, Henning SJ (2009) Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice. Am J Physiol Gastrointest Liver Physiol 297(3):G461–G470. doi:10.1152/ajpgi.90446.2008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VH, Groom AC, Chambers AF (2003) Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 82(3):199–206. doi:10.1023/B:BREA.0000004377.12288.3c

    Article  PubMed  CAS  Google Scholar 

  5. Song J, Chang I, Chen Z, Kang M, Wang CY (2010) Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One 5(7):e11456. doi:10.1371/journal.pone.0011456

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Jordanides NE, Jorgensen HG, Holyoake TL, Mountford JC (2006) Functional ABCG2 is overexpressed on primary CML CD34+ cells and is inhibited by imatinib mesylate. Blood 108(4):1370–1373. doi:10.1182/blood-2006-02-003145

    Article  PubMed  CAS  Google Scholar 

  7. Doyle LA, Ross DD (2003) Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 22(47):7340–7358. doi:10.1038/sj.onc.1206938

    Article  PubMed  CAS  Google Scholar 

  8. Murase M, Kano M, Tsukahara T, Takahashi A, Torigoe T, Kawaguchi S, Kimura S, Wada T, Uchihashi Y, Kondo T, Yamashita T, Sato N (2009) Side population cells have the characteristics of cancer stem-like cells/cancer-initiating cells in bone sarcomas. Br J Cancer 101(8):1425–1432. doi:10.1038/sj.bjc.6605330

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Tsuji S, Yoshimoto M, Takahashi K, Noda Y, Nakahata T, Heike T (2008) Side population cells contribute to the genesis of human endometrium. Fertil Steril 90(4 Suppl):1528–1537. doi:10.1016/j.fertnstert.2007.08.005

    Article  PubMed  Google Scholar 

  10. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183(4):1797–1806

    Article  PubMed  CAS  Google Scholar 

  11. Friel AM, Sergent PA, Patnaude C, Szotek PP, Oliva E, Scadden DT, Seiden MV, Foster R, Rueda BR (2008) Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells. Cell Cycle 7(2):242–249

    Article  PubMed  CAS  Google Scholar 

  12. Santamaria-Martinez A, Barquinero J, Barbosa-Desongles A, Hurtado A, Pinos T, Seoane J, Poupon MF, Morote J, Reventos J, Munell F (2009) Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis. Exp Cell Res 315(17):3004–3013. doi:10.1016/j.yexcr.2009.05.007

    Article  PubMed  CAS  Google Scholar 

  13. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7(9):1028–1034. doi:10.1038/nm0901-1028

    Article  PubMed  CAS  Google Scholar 

  14. Harris MA, Yang H, Low BE, Mukherjee J, Guha A, Bronson RT, Shultz LD, Israel MA, Yun K (2008) Cancer stem cells are enriched in the side population cells in a mouse model of glioma. Cancer Res 68(24):10051–10059. doi:10.1158/0008-5472.CAN-08-0786

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Kamohara Y, Haraguchi N, Mimori K, Tanaka F, Inoue H, Mori M, Kanematsu T (2008) The search for cancer stem cells in hepatocellular carcinoma. Surgery 144(2):119–124. doi:10.1016/j.surg.2008.04.008

    Article  PubMed  Google Scholar 

  16. Kondo T, Setoguchi T, Taga T (2004) Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 101(3):781–786. doi:10.1073/pnas.0307618100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Matsui W, Wang Q, Barber JP, Brennan S, Smith BD, Borrello I, McNiece I, Lin L, Ambinder RF, Peacock C, Watkins DN, Huff CA, Jones RJ (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68(1):190–197. doi:10.1158/0008-5472.CAN-07-3096

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Nindl I, Rindfleisch K, Lotz B, Schneider A, Durst M (1999) Uniform distribution of HPV 16 E6 and E7 variants in patients with normal histology, cervical intra-epithelial neoplasia and cervical cancer. Int J Cancer 82(2):203–207. doi:10.1002/(SICI)1097-0215(19990719)82:2<203:AID-IJC9>3.0.CO;2-9

    Article  PubMed  CAS  Google Scholar 

  19. Goldberg DM, Diamandis EP (1993) Models of neoplasia and their diagnostic implications: a historical perspective. Clin Chem 39(11 Pt 2):2360–2374

    PubMed  CAS  Google Scholar 

  20. Pierce GB (1974) Neoplasms, differentiations and mutations. Am J Pathol 77(1):103–118

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4):1001–1020

    PubMed  CAS  Google Scholar 

  22. Martens JE, Arends J, Van der Linden PJ, De Boer BA, Helmerhorst TJ (2004) Cytokeratin 17 and p63 are markers of the HPV target cell, the cervical stem cell. Anticancer Res 24(2B):771–775

    PubMed  Google Scholar 

  23. Smedts F, Ramaekers F, Troyanovsky S, Pruszczynski M, Robben H, Lane B, Leigh I, Plantema F, Vooijs P (1992) Basal-cell keratins in cervical reserve cells and a comparison to their expression in cervical intraepithelial neoplasia. Am J Pathol 140(3):601–612

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Crum CP (2000) Contemporary theories of cervical carcinogenesis: the virus, the host, and the stem cell. Mod Pathol 13(3):243–251. doi:10.1038/modpathol.3880045

    Article  PubMed  CAS  Google Scholar 

  25. Caceres-Cortes JR, Alvarado-Moreno JA, Waga K, Rangel-Corona R, Monroy-Garcia A, Rocha-Zavaleta L, Urdiales-Ramos J, Weiss-Steider B, Haman A, Hugo P, Brousseau R, Hoang T (2001) Implication of tyrosine kinase receptor and steel factor in cell density-dependent growth in cervical cancers and leukemias. Cancer Res 61(16):6281–6289

    PubMed  CAS  Google Scholar 

  26. Hu C, Li H, Li J, Zhu Z, Yin S, Hao X, Yao M, Zheng S, Gu J (2008) Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. Carcinogenesis 29(12):2289–2297. doi:10.1093/carcin/bgn223

    Article  PubMed  CAS  Google Scholar 

  27. Barrandon Y, Green H (1987) Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci USA 84(8):2302–2306

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Kong QL, Hu LJ, Cao JY, Huang YJ, Xu LH, Liang Y, Xiong D, Guan S, Guo BH, Mai HQ, Chen QY, Zhang X, Li MZ, Shao JY, Qian CN, Xia YF, Song LB, Zeng YX, Zeng MS (2010) Epstein-Barr virus-encoded LMP2A induces an epithelial–mesenchymal transition and increases the number of side population stem-like cancer cells in nasopharyngeal carcinoma. PLoS Pathog 6(6):e1000940. doi:10.1371/journal.ppat.1000940

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC, Johnson RP (1997) Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 3(12):1337–1345

    Article  PubMed  CAS  Google Scholar 

  30. Croagh D, Phillips WA, Redvers R, Thomas RJ, Kaur P (2007) Identification of candidate murine esophageal stem cells using a combination of cell kinetic studies and cell surface markers. Stem Cells 25(2):313–318. doi:10.1634/stemcells.2006-0421

    Article  PubMed  CAS  Google Scholar 

  31. Cervello I, Gil-Sanchis C, Mas A, Delgado-Rosas F, Martinez-Conejero JA, Galan A, Martinez-Romero A, Martinez S, Navarro I, Ferro J, Horcajadas JA, Esteban FJ, O’Connor JE, Pellicer A, Simon C (2010) Human endometrial side population cells exhibit genotypic, phenotypic and functional features of somatic stem cells. PLoS One 5(6):e10964. doi:10.1371/journal.pone.0010964

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF (2010) Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA 107(8):3722–3727. doi:10.1073/pnas.0915135107

    Article  PubMed Central  PubMed  Google Scholar 

  33. Addla SK, Brown MD, Hart CA, Ramani VA, Clarke NW (2008) Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am J Physiol Renal Physiol 295(3):F680–F687. doi:10.1152/ajprenal.90286.2008

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Wulf GG, Wang RY, Kuehnle I, Weidner D, Marini F, Brenner MK, Andreeff M, Goodell MA (2001) A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia. Blood 98(4):1166–1173

    Article  PubMed  CAS  Google Scholar 

  35. Cervello I, Martinez-Conejero JA, Horcajadas JA, Pellicer A, Simon C (2007) Identification, characterization and co-localization of label-retaining cell population in mouse endometrium with typical undifferentiated markers. Hum Reprod 22(1):45–51. doi:10.1093/humrep/del332

    Article  PubMed  CAS  Google Scholar 

  36. Kato K, Yoshimoto M, Adachi S, Yamayoshi A, Arima T, Asanoma K, Kyo S, Nakahata T, Wake N (2007) Characterization of side-population cells in human normal endometrium. Hum Reprod 22(5):1214–1223. doi:10.1093/humrep/del514

    Article  PubMed  CAS  Google Scholar 

  37. Larderet G, Fortunel NO, Vaigot P, Cegalerba M, Maltere P, Zobiri O, Gidrol X, Waksman G, Martin MT (2006) Human side population keratinocytes exhibit long-term proliferative potential and a specific gene expression profile and can form a pluristratified epidermis. Stem Cells 24(4):965–974. doi:10.1634/stemcells.2005-0196

    Article  PubMed  CAS  Google Scholar 

  38. Redvers RP, Li A, Kaur P (2006) Side population in adult murine epidermis exhibits phenotypic and functional characteristics of keratinocyte stem cells. Proc Natl Acad Sci USA 103(35):13168–13173. doi:10.1073/pnas.0602579103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Wan H, Yuan M, Simpson C, Allen K, Gavins FN, Ikram MS, Basu S, Baksh N, O’Toole EA, Hart IR (2007) Stem/progenitor cell-like properties of desmoglein 3dim cells in primary and immortalized keratinocyte lines. Stem Cells 25(5):1286–1297. doi:10.1634/stemcells.2006-0304

    Article  PubMed  CAS  Google Scholar 

  40. Guan Y, Gerhard B, Hogge DE (2003) Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101(8):3142–3149. doi:10.1182/blood-2002-10-3062

    Article  PubMed  CAS  Google Scholar 

  41. Gothot A, Pyatt R, McMahel J, Rice S, Srour EF (1997) Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0/G1 phase of the cell cycle. Blood 90(11):4384–4393

    PubMed  CAS  Google Scholar 

  42. Holyoake T, Jiang X, Eaves C, Eaves A (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94(6):2056–2064

    PubMed  CAS  Google Scholar 

  43. Ueda T, Brenner S, Malech HL, Langemeijer SM, Perl S, Kirby M, Phang OA, Krouse AE, Donahue RE, Kang EM, Tisdale JF (2005) Cloning and functional analysis of the rhesus macaque ABCG2 gene. Forced expression confers an SP phenotype among hematopoietic stem cell progeny in vivo. J Biol Chem 280(2):991–998. doi:10.1074/jbc.M409796200

    Article  PubMed  CAS  Google Scholar 

  44. Bunting KD, Zhou S, Lu T, Sorrentino BP (2000) Enforced P-glycoprotein pump function in murine bone marrow cells results in expansion of side population stem cells in vitro and repopulating cells in vivo. Blood 96(3):902–909

    PubMed  CAS  Google Scholar 

  45. Ma J, Lu S, Yu L, Tian J, Li J, Wang H, Xu W (2011) FaDu cell characteristics induced by multidrug resistance. Oncol Rep 26(5):1189–1195. doi:10.3892/or.2011.1418

    PubMed  CAS  Google Scholar 

  46. Guenova ML, Balatzenko GN, Nikolova VR, Spassov BV, Konstantinov SM (2010) An anti-apoptotic pattern correlates with multidrug resistance in acute myeloid leukemia patients: a comparative study of active caspase-3, cleaved PARPs, Bcl-2, Survivin and MDR1 gene. Hematology 15(3):135–143. doi:10.1179/102453309X12583347113690

    Article  PubMed  CAS  Google Scholar 

  47. Lichtenauer UD, Shapiro I, Geiger K, Quinkler M, Fassnacht M, Nitschke R, Ruckauer KD, Beuschlein F (2008) Side population does not define stem cell-like cancer cells in the adrenocortical carcinoma cell line NCI h295R. Endocrinology 149(3):1314–1322. doi:10.1210/en.2007-1001

    Article  PubMed  CAS  Google Scholar 

  48. Tokar EJ, Qu W, Liu J, Liu W, Webber MM, Phang JM, Waalkes MP (2010) Arsenic-specific stem cell selection during malignant transformation. J Natl Cancer Inst 102(9):638–649. doi:10.1093/jnci/djq093

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Shi GM, Xu Y, Fan J, Zhou J, Yang XR, Qiu SJ, Liao Y, Wu WZ, Ji Y, Ke AW, Ding ZB, He YZ, Wu B, Yang GH, Qin WZ, Zhang W, Zhu J, Min ZH, Wu ZQ (2008) Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials. J Cancer Res Clin Oncol 134(11):1155–1163. doi:10.1007/s00432-008-0407-1

    Article  PubMed  CAS  Google Scholar 

  50. Haraguchi N, Inoue H, Tanaka F, Mimori K, Utsunomiya T, Sasaki A, Mori M (2006) Cancer stem cells in human gastrointestinal cancers. Hum Cell 19(1):24–29. doi:10.1111/j.1749-0774.2005.00004.x

    Article  PubMed  Google Scholar 

  51. Ohtsuki S, Kamoi M, Watanabe Y, Suzuki H, Hori S, Terasaki T (2007) Correlation of induction of ATP binding cassette transporter A5 (ABCA5) and ABCB1 mRNAs with differentiation state of human colon tumor. Biol Pharm Bull 30(6):1144–1146. doi:JST.JSTAGE/bpb/30.1144

    Article  PubMed  CAS  Google Scholar 

  52. Chen Z, Liu F, Ren Q, Zhao Q, Ren H, Lu S, Zhang L, Han Z (2010) Suppression of ABCG2 inhibits cancer cell proliferation. Int J Cancer 126(4):841–851. doi:10.1002/ijc.24796

    PubMed  CAS  Google Scholar 

  53. Krishnamurthy P, Schuetz JD (2006) Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 46:381–410. doi:10.1146/annurev.pharmtox.46.120604.141238

    Article  PubMed  CAS  Google Scholar 

  54. Bebes A, Kis K, Nagy T, Kurunczi A, Polyanka H, Bata-Csorgo Z, Kemeny L, Dobozy A, Szell M (2011) The expressions of ABCC4 and ABCG2 xenobiotic transporters in human keratinocytes are proliferation-related. Arch Dermatol Res. doi:10.1007/s00403-011-1174-4

    PubMed  Google Scholar 

  55. Katoh SY, Ueno M, Takakura N (2008) Involvement of MDR1 function in proliferation of tumour cells. J Biochem 143(4):517–524. doi:10.1093/jb/mvm242

    Article  PubMed  CAS  Google Scholar 

  56. Li A, Simmons PJ, Kaur P (1998) Identification and isolation of candidate human keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci USA 95(7):3902–3907

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Lopez J, Poitevin A, Mendoza-Martinez V, Perez-Plasencia C, Garcia-Carranca A (2012) Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer 12:48. doi:10.1186/1471-2407-12-48

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  58. Witkowski CM, Bowden GT, Nagle RB, Cress AE (2000) Altered surface expression and increased turnover of the alpha6beta4 integrin in an undifferentiated carcinoma. Carcinogenesis 21(2):325–330

    Article  PubMed  CAS  Google Scholar 

  59. Li H, Chen X, Calhoun-Davis T, Claypool K, Tang DG (2008) PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Res 68(6):1820–1825. doi:10.1158/0008-5472.CAN-07-5878

    Article  PubMed  CAS  Google Scholar 

  60. Zhang Z, Zhu F, Xiao L, Wang M, Tian R, Shi C, Qin R (2011) Side population cells in human gallbladder cancer cell line GBC-SD regulated by TGF-beta-induced epithelial–mesenchymal transition. J Huazhong Univ Sci Technolog Med Sci 31(6):749–755. doi:10.1007/s11596-011-0671-1

    Article  PubMed  CAS  Google Scholar 

  61. Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A, Aakre M, Shyr Y, Moses HL (2009) Abrogation of TGF-beta signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest 119(6):1571–1582. doi:10.1172/JCI37480

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  62. Danesi R, Agen C, Bernardini N, Costa M, Del Tacca M (1992) The antiproliferative effect of suramin on the cancer cell line SW-13 is mediated by the inhibition of transforming growth factor beta 1 (TGF-beta 1). Pharmacol Res 25(Suppl 1):17–18

    Article  PubMed  CAS  Google Scholar 

  63. Kitisin K, Saha T, Blake T, Golestaneh N, Deng M, Kim C, Tang Y, Shetty K, Mishra B, Mishra L (2007) Tgf-Beta signaling in development. Sci STKE 2007(399):cm1. doi:10.1126/stke.3992007cm1

  64. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi:10.1038/35102167

    Article  PubMed  CAS  Google Scholar 

  65. Gu W, Yeo E, McMillan N, Yu C (2011) Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther 18(12):897–905. doi:10.1038/cgt.2011.58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Pedro Chavez for his helpful technical assistance and Victor Rosales for his technical support with the cell sorting techniques and data analysis. This work was supported by a grant from CONACyT (Project No. 105174). JVT received a scholarship from CONACyT (173031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efraín Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villanueva-Toledo, J., Ponciano-Gómez, A., Ortiz-Sánchez, E. et al. Side populations from cervical-cancer-derived cell lines have stem-cell-like properties. Mol Biol Rep 41, 1993–2004 (2014). https://doi.org/10.1007/s11033-014-3047-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3047-3

Keywords

Navigation