Skip to main content

Advertisement

Log in

Expression of NAT2 in immune system cells and the relation of NAT2 gene polymorphisms in the anti-tuberculosis therapy in Mexican mestizo population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Arylamine N-acetyltransferase 2 (NAT2) metabolizes isoniazid (INH) and Single Nucleotide Polymorphisms (SNP) responsible for its activity has been reported. The aim of this study in the Mexican mestizo population was to evaluate NAT2 expression at the protein level in immune cells, as well as the distribution and frequency of six NAT2 SNPs and their association with anti-TB therapy, by measuring the plasma levels of INH and Acetyl-INH (AcINH). We performed genotyping assays of NAT2 SNPs in 40 TB patients and 121 healthy volunteers by real-time PCR. A method for detecting NAT2 in immune cells using flow cytometry was developed. Plasma concentrations of INH and AcINH were obtained by HPLC in TB patients and the Metabolic Ratio (MR) was calculated. The phenotypes obtained in the healthy volunteers were as follows; 18.87 % of subjects had the rapid acetylator phenotype, 45.45 % had the intermediate phenotype and 39.66 % exhibited the slow acetylator phenotype. In the TB patient group, 35 % of patients had the rapid acetylator phenotype, 32.5 % were intermediate and 32.5 % showed the slow acetylator phenotype. A higher expression level of NAT2 in innate immune cells from TB patients compared to those from healthy volunteers was detected (P < 0.013). In TB patients the MR showed a bimodal distribution with an antimode of 0.7, which was used as a threshold value for acetylator classification. A high correspondence between the rapid and slow acetylator phenotype with MR was demonstrated. In conclusion, the 282C>T, 341T>C, 481C>T, 590G>A, 803A>G, 857G>A SNPs of NAT2 gene provides accurate for prediction of the acetylator phenotype in Mexican mestizo population. A statistical difference was found in frequency of rapid metabolizer phenotype, which was higher in TB patients. In addition, the expression of NAT2 protein in immune cells can lead to further studies related to its functional role in the innate immune response against M. tuberculosis and other xenobiotics metabolized by this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sim E, Walters K, Boukouvala S (2008) Arylamine N-acetyltransferases: from structure to function. Drug Metab Rev 40(3):479–510

    Article  CAS  PubMed  Google Scholar 

  2. Walraven JM, Zang Y, Trent JO, Hein DW (2008) Structure/function evaluations of single nucleotide polymorphisms in human N-acetyltransferase 2. Curr Drug Metab 9(6):471–486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Sim E, Lack N, Wang CJ, Long H, Westwood I, Fullam E, Kawamura A (2008) Arylamine N-acetyltransferases: structural and functional implications of polymorphisms. Toxicology 254(3):170–183

    Article  CAS  PubMed  Google Scholar 

  4. Grant DM, Goodfellow GH, Sugamori K, Durette K (2000) Pharmacogenetics of the human arylamine N-acetyltransferases. Pharmacology 61(3):204–211

    Article  CAS  PubMed  Google Scholar 

  5. Boukouvala S, Fakis G (2005) Arylamine N-acetyltransferases: what we learn from genes and genomes. Drug Metab Rev 37(3):511–564

    Article  CAS  PubMed  Google Scholar 

  6. Cascorbi I, Brockmoller J, Mrozikiewicz PM, Muller A, Roots I (1999) Arylamine N-acetyltransferase activity in man. Drug Metab Rev 31(2):489–502

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigues-Lima F, Dairou J, Dupret JM (2008) Effect of environmental substances on the activity of arylamine N-acetyltransferases. Curr Drug Metab 9(6):505–509

    Article  CAS  PubMed  Google Scholar 

  8. McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P (2006) Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother 50(4):1170–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cai Y, Yi J, Zhou C, Shen X (2012) Pharmacogenetic study of drug-metabolising enzyme polymorphisms on the risk of anti-tuberculosis drug-induced liver injury: a meta-analysis. PLoS One 7(10):e47769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Holdiness MR (1984) Clinical pharmacokinetics of the antituberculosis drugs. Clin Pharmacokinet 9(6):511–544

    Article  CAS  PubMed  Google Scholar 

  11. Hein DW (2009) N-acetyltransferase SNPs: emerging concepts serve as a paradigm for understanding complexities of personalized medicine. Expert Opin Drug Metab Toxicol 5(4):353–366

  12. Harris HW, Knight RA, Selin MJ (1958) Comparison of isoniazid concentrations in the blood of people of Japanese and European descent; therapeutic and genetic implications. Am Rev Tuberc 78(6):944–948

  13. Sime E, Hickman D (1991) Polymorphism in human N-acetyltransferase–the case of the missing allele. Trends Pharmacol Sci 12(6):211–213

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Martin E (2008) Interethnic and intraethnic variability of NAT2 single nucleotide polymorphisms. Curr Drug Metab 9(6):487–497

    Article  CAS  PubMed  Google Scholar 

  15. Salazar-Flores J, Dondiego-Aldape R, Rubi-Castellanos R, Anaya-Palafox M, Nuno-Arana I, Canseco-Avila LM, Flores-Flores G, Morales-Vallejo ME, Barojas-Perez N, Munoz-Valle JF, Campos-Gutierrez R, Rangel-Villalobos H (2010) Population structure and paternal admixture landscape on present-day Mexican-Mestizos revealed by Y-STR haplotypes. Am J Hum Biol 22(3):401–409

    Article  CAS  PubMed  Google Scholar 

  16. Lisker R, Ramirez E, Babinsky V (1996) Genetic structure of autochthonous populations of Meso-America: Mexico. Hum Biol 68(3):395–404

    CAS  PubMed  Google Scholar 

  17. Kinzig-Schippers M, Tomalik-Scharte D, Jetter A, Scheidel B, Jakob V, Rodamer M, Cascorbi I, Doroshyenko O, Sorgel F, Fuhr U (2005) Should we use N-acetyltransferase type 2 genotyping to personalize isoniazid doses? Antimicrob Agents Chemother 49(5):1733–1738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Wagner CR, Bergstrom CP, Koning KR, Hanna PE (1996) Arylamine N-acetyltransferases. Expression in Escherichia coli, purification, and substrate specificities of recombinant hamster monomorphic and polymorphic isozymes. Drug Metab Dispos Biol Fate Chem 24(2):245–253

  19. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68(4):978–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76(3):449–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Au WW, Sierra-Torres CH, Cajas-Salazar N, Salama SA (1999) Inheritance of polymorphic metabolizing genes on environmental disease and quality of life. Mutat Res 428(1–2):131–140

    Article  CAS  PubMed  Google Scholar 

  22. Wilkinson GR (2005) Drug metabolism and variability among patients in drug response. N Engl J Med 352(21):2211–2221

    Article  CAS  PubMed  Google Scholar 

  23. Chamorro JG, Castagnino JP, Musella RM, Nogueras M, Aranda FM, Frias A, Visca M, Aidar O, Peres S, de Larranaga GF (2013) Sex, ethnicity, and slow acetylator profile are the major causes of hepatotoxicity induced by antituberculosis drugs. J Gastroenterol Hepatol 28(2):323–328

    Article  CAS  PubMed  Google Scholar 

  24. Hein DW, Doll MA (2012) Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics 13(1):31–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bell DA, Taylor JA, Butler MA, Stephens EA, Wiest J, Brubaker LH, Kadlubar FF, Lucier GW (1993) Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 14(8):1689–1692

    Article  CAS  PubMed  Google Scholar 

  26. Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, Sperling K, Roots I (1995) Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet 57(3):581–592

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Mrozikiewicz PM, Cascorbi I, Brockmoller J, Roots I (1996) Determination and allelic allocation of seven nucleotide transitions within the arylamine N-acetyltransferase gene in the Polish population. Clin Pharmacol Ther 59(4):376–382

    Article  CAS  PubMed  Google Scholar 

  28. Agundez JA, Olivera M, Martinez C, Ladero JM, Benitez J (1996) Identification and prevalence study of 17 allelic variants of the human NAT2 gene in a white population. Pharmacogenetics 6(5):423–428

    Article  CAS  PubMed  Google Scholar 

  29. Gross M, Kruisselbrink T, Anderson K, Lang N, McGovern P, Delongchamp R, Kadlubar F (1999) Distribution and concordance of N-acetyltransferase genotype and phenotype in an American population. Cancer Epidemiol Biomarkers Prev 8(8):683–692

    CAS  PubMed  Google Scholar 

  30. Deguchi T, Mashimo M, Suzuki T (1990) Correlation between acetylator phenotypes and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J Biol Chem 265(22):12757–12760

    CAS  PubMed  Google Scholar 

  31. Lin HJ, Han CY, Lin BK, Hardy S (1994) Ethnic distribution of slow acetylator mutations in the polymorphic N-acetyltransferase (NAT2) gene. Pharmacogenetics 4(3):125–134

    Article  CAS  PubMed  Google Scholar 

  32. Jorge-Nebert LF, Eichelbaum M, Griese EU, Inaba T, Arias TD (2002) Analysis of six SNPs of NAT2 in Ngawbe and Embera Amerindians of Panama and determination of the Embera acetylation phenotype using caffeine. Pharmacogenetics 12(1):39–48

    Article  CAS  PubMed  Google Scholar 

  33. Diaz-Molina R, Cornejo-Bravo JM, Ramos-Ibarra MA, Estrada-Guzman JD, Morales-Arango O, Reyes-Baez R, Robinson-Navarro OM, Soria-Rodriguez CG (2008) Genotype and phenotype of NAT2 and the occurrence of adverse drug reactions in Mexican individuals to an isoniazid-based prophylactic chemotherapy for tuberculosis. Mol Med Rep 1(6):875–879

    CAS  PubMed  Google Scholar 

  34. Taja-Chayeb L, Agundez JA, Miguez-Munoz C, Chavez-Blanco A, Duenas-Gonzalez A (2012) Arylamine N-acetyltransferase 2 genotypes in a Mexican population. Genet Mol Res 11(2):1082–1092

    Article  CAS  PubMed  Google Scholar 

  35. Ramos MA, Mares RE, Avalos ED, Hernandez A, Hernandez R, Lameda R, Malvaez AE, Rodriguez CA, Rodriguez R (2011) Pharmacogenetic screening of N-acetyltransferase 2, thiopurine s-methyltransferase, and 5,10-methylene-tetrahydrofolate reductase polymorphisms in Northwestern Mexicans. Genet Test Mol Biomarkers 15(5):351–355

    Article  CAS  PubMed  Google Scholar 

  36. Chamorro JG, Castagnino JP, Musella RM, Frias A, Aranda FM, De Larranaga GF (2012) The distribution of allelic and genotypic frequencies of N-Acetyltransferase-2 variants in an Argentine population. J Infect Dev Ctries 6(9):671–674

    Article  PubMed  Google Scholar 

  37. Talbot J, Magno LA, Santana CV, Sousa SM, Melo PR, Correa RX, Di Pietro G, Rios-Santos F (2010) Interethnic diversity of NAT2 polymorphisms in Brazilian admixed populations. BMC Genet 11:87

    Article  PubMed Central  PubMed  Google Scholar 

  38. Arias TD, Jorge LF, Griese EU, Inaba T, Eichelbaum M (1993) Polymorphic N-acetyltransferase (NAT2) in Amerindian populations of Panama and Colombia: high frequencies of point mutation 857A, as found in allele S3/M3. Pharmacogenetics 3(6):328–331

    Article  CAS  PubMed  Google Scholar 

  39. Martinez C, Agundez JA, Olivera M, Llerena A, Ramirez R, Hernandez M, Benitez J (1998) Influence of genetic admixture on polymorphisms of drug-metabolizing enzymes: analyses of mutations on NAT2 and C gamma P2E1 genes in a mixed Hispanic population. Clin Pharmacol Ther 63(6):623–628

    Article  CAS  PubMed  Google Scholar 

  40. Sim E, Fakis G, Laurieri N, Boukouvala S (2012) Arylamine N-acetyltransferases–from drug metabolism and pharmacogenetics to identification of novel targets for pharmacological intervention. Adv Pharmacol 63:169–205

    Article  CAS  PubMed  Google Scholar 

  41. Guerra C, Johal K, Morris D, Moreno S, Alvarado O, Gray D, Tanzil M, Pearce D, Venketaraman V (2012) Control of Mycobacterium tuberculosis growth by activated natural killer cells. Clin Exp Immunol 168(1):142–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Portevin D, Via LE, Eum S, Young D (2012) Natural killer cells are recruited during pulmonary tuberculosis and their ex vivo responses to mycobacteria vary between healthy human donors in association with KIR haplotype. Cell Microbiol 14(11):1734–1744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Natarajan K, Kundu M, Sharma P, Basu J (2011) Innate immune responses to M. tuberculosis infection. Tuberculosis 91(5):427–431

    Article  CAS  PubMed  Google Scholar 

  44. Khalili H, Dashti-Khavidaki S, Amini M, Mahjub R, Hajiabdolbaghi M (2010) Is there any difference between acetylator phenotypes in tuberculosis patients and healthy subjects? Eur J Clin Pharmacol 66(3):261–267

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants 162333 and UASLP-CA-28, 2013 (to Milán-Segovia, RC) and 162350 (to Portales-Pérez, DP) from CONACYT, México. Salazar-González R was a recipient of a scholarship (331891) from CONACYT, México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Portales-Pérez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar-González, R., Gómez, R., Romano-Moreno, S. et al. Expression of NAT2 in immune system cells and the relation of NAT2 gene polymorphisms in the anti-tuberculosis therapy in Mexican mestizo population. Mol Biol Rep 41, 7833–7843 (2014). https://doi.org/10.1007/s11033-014-3677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3677-5

Keywords

Navigation