Skip to main content

Advertisement

Log in

Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (LncRNAs) are non-coding RNAs. The potential roles of lncRNAs in type 2 diabetes mellitus (T2DM) are not well-known. In this study, we aim to assess the expression levels of LY86-AS1 and HCG27_201 in T2DM patients and a healthy control group. We obtained whole blood and serum samples from 100 T2DM and 100 non-diabetic subjects. Peripheral blood mononuclear cells (PBMCs) were extracted from whole blood samples using Ficoll. Total RNA was isolated from PBMCs obtained from patients with type 2 diabetes mellitus and healthy control individuals using TRIzol LS reagent (GeneAll Biotechnology Co., LTD.). Extracted RNA was used to synthesize complementary DNA (cDNA) with a Reverse Transcription Kit (Takara). Real-time was performed with SYBR Green (Takara) and monitored by a Rotor-Gene (Qiagen) system. We performed quantitative PCR analysis of the LY86-AS1 and HCG27_201 lncRNA expression levels in the 200 samples. Here we found that the expression of LY86-AS1 and HCG27_201 were down regulated in the T2DM group compared with the control group. We further identify that the expression of both lncRNAs was negatively correlated with fasting blood sugar (FBS) levels. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic value of LY86-AS1 and HCG27_201 as biomarkers for T2DM. ROC analysis demonstrated that LY86-AS1 with an area under the ROC curve (AUC) of 0.747 (P < 0.0001, sensitivity: 64.6, and specificity: 79.8) might be the potential novel diagnostic biomarkers for T2DM. Lower expression of our two studied long non-coding RNAs LY86-AS1 and HCG27_201 in type 2 diabetes mellitus patients indicates their role in the pathogenesis of T2DM. Furthermore, LY86-AS1 could possibly be used as a diagnostic marker for T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chang W (2017) Non-coding RNAs and berberine: a new mechanism of its anti-diabetic activities. Eur J Pharmacol 795:8–12

    Article  CAS  Google Scholar 

  2. Feng S-D, Yang J-H, Yao CH, Yang S-S, Zhu Z-M, Wu D et al (2016) Potential regulatory mechanisms of lncRNA in diabetes and its complications. Biochem Cell Biol 95(3):361–367

    Article  Google Scholar 

  3. Association AD (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62

    Article  Google Scholar 

  4. Sun X, Wong D (2016) Long non-coding RNA-mediated regulation of glucose homeostasis and diabetes. Am J Cardiovasc Dis 6(2):17

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Afrookhteh A, Emamgholipour S, Alipoor B, Moradi N, Meshkani R, Nasli-Esfahani E et al (2017) The circulating levels of complement-C1q/TNF-related protein 13 (CTRP13) in patients with type 2 diabetes and its association with insulin resistance. Clin Lab 63(2):327–333

    PubMed  Google Scholar 

  6. Shanaki M, Moradi N, Emamgholipour S, Fadaei R, Poustchi H (2017) Lower circulating irisin is associated with nonalcoholic fatty liver disease and type 2 diabetes. Diabetes Metab Syndr 11:S467–S472

    Article  Google Scholar 

  7. Shanaki M, Fadaei R, Moradi N, Emamgholipour S, Poustchi H (2016) The circulating CTRP13 in type 2 diabetes and non-alcoholic fatty liver patients. PLoS ONE 11(12):e0168082

    Article  Google Scholar 

  8. Morán I, Akerman İ, van de Bunt M, Xie R, Benazra M, Nammo T et al (2012) Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab 16(4):435–448

    Article  Google Scholar 

  9. Al-Tobasei R, Paneru B, Salem M (2016) Genome-wide discovery of long non-coding RNAs in rainbow trout. PLoS ONE 11(2):e0148940

    Article  Google Scholar 

  10. Schmitz SU, Grote P, Herrmann BG (2016) Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci 73(13):2491–2509

    Article  CAS  Google Scholar 

  11. Esguerra JL, Eliasson L (2014) Functional implications of long non-coding RNAs in the pancreatic islets of Langerhans. Front Genet 5:209

    Article  Google Scholar 

  12. Ma L, Bajic VB, Zhang Z (2013) On the classification of long non-coding RNAs. RNA Biol 10(6):924–933

    Article  CAS  Google Scholar 

  13. Luo Q, Chen Y (2016) Long noncoding RNAs and Alzheimer’s disease. Clin Interv Aging 11:867

    Article  CAS  Google Scholar 

  14. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463

    Article  CAS  Google Scholar 

  15. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21(6):354–361

    Article  CAS  Google Scholar 

  16. Sánchez Y, Huarte M (2013) Long non-coding RNAs: challenges for diagnosis and therapies. Nucleic Acid Ther 23(1):15–20

    Article  Google Scholar 

  17. Chen X, Yan CC, Zhang X, You Z-H (2016) Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 18(4):558–576

    PubMed Central  Google Scholar 

  18. Knoll M, Lodish HF, Sun L (2015) Long non-coding RNAs as regulators of the endocrine system. Nat Rev Endocrinol 11(3):151

    Article  CAS  Google Scholar 

  19. Kong X, Xing X, Hong J, Zhang X, Yang W (2017) Association of a type 2 diabetes genetic risk score with insulin secretion modulated by insulin sensitivity among Chinese Hans. Clin Genet 91(6):832–842

    Article  CAS  Google Scholar 

  20. Giroud M, Scheideler M (2017) Long non-coding RNAs in metabolic organs and energy homeostasis. Int J Mol Sci 18(12):2578

    Article  Google Scholar 

  21. de Mello VDF, Kolehmanien M, Schwab U, Pulkkinen L, Uusitupa M (2012) Gene expression of peripheral blood mononuclear cells as a tool in dietary intervention studies: what do we know so far? Mol Nutr Food Res 56(7):1160–1172

    Article  Google Scholar 

  22. Díaz-Rúa R, Palou A, Oliver P (2016) Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations. Food Nutr Res 60(1):33554

    Article  Google Scholar 

  23. Wang X, Chang X, Zhang P, Fan L, Zhou T, Sun K (2017) Aberrant expression of long non-coding RNAs in newly diagnosed type 2 diabetes indicates potential roles in chronic inflammation and insulin resistance. Cell Physiol Biochem 43(6):2367–2378

    Article  CAS  Google Scholar 

  24. Li X, Zhao Z, Gao C, Rao L, Hao P, Jian D et al (2017) The diagnostic value of whole blood lncRNA ENST00000550337. 1 for pre-diabetes and Type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 125(06):377–383

    Article  CAS  Google Scholar 

  25. Carter G, Miladinovic B, Patel AA, Deland L, Mastorides S, Patel NA (2015) Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin 4:102–107

    Article  Google Scholar 

  26. Qiu GZ, Tian W, Fu HT, Li CP, Liu B (2016) Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Biochem Biophys Res Commun. 471(1):135–141

    Article  CAS  Google Scholar 

  27. Raut SK, Khullar M (2018) The big entity of new RNA world: long non coding RNAs in microvascular complications of diabetes. Front Endocrinol 9:300

    Article  Google Scholar 

  28. He X, Ou C, Xiao Y, Han Q, Li H, Zhou S (2017) LncRNAs: key players and novel insights into diabetes mellitus. Oncotarget 8(41):71325

    PubMed  PubMed Central  Google Scholar 

  29. Gao Y, Wu F, Zhou J, Yan L, Jurczak MJ, Lee HY et al (2014) The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res 42(22):13799–13811

    Article  CAS  Google Scholar 

  30. Mansoori Z, Ghaedi H, Sadatamini M, Vahabpour R, Rahimipour A, Shanaki M et al (2018) Downregulation of long non-coding RNAs LINC00523 and LINC00994 in type 2 diabetes in an Iranian cohort. Mol Biol Rep 45:1227–1233

    Article  CAS  Google Scholar 

  31. Mitas M, Mikhitarian K, Walters C, Baron PL, Elliott BM, Brothers TE et al (2001) Quantitative real-time RT-PCR detection of breast cancer micrometastasis using a multigene marker panel. Int J Cancer 93(2):162–171

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Shahid Beheshti University of Medical Science, Tehran, Iran. This article was extracted from MSc thesis. The authors thank Shahid Beheshti Deputy of Research Affairs for funding this project. We would like to thank all members of Shohada Hospital who helped us with this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faranak Kazerouni.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

saeidi, L., Ghaedi, H., Sadatamini, M. et al. Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol Biol Rep 45, 2601–2608 (2018). https://doi.org/10.1007/s11033-018-4429-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4429-8

Keywords

Navigation