Skip to main content
Log in

Efficient isolation and proliferation of human adipose-derived mesenchymal stromal cells in xeno-free conditions

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Classical methods used for culture of adipose-derived mesenchymal stromal cells (ADSCs) use xenobiotic components, which may present a potential risk for biological contamination and/or elicit immunological reactions. Therefore, the aim of this study was to establish a xeno-free methodology for the isolation and proliferation of human ADSCs (hADSCs). hADSCs were isolated by enzymatic digestion or mechanical dissociation and cultured in the presence of fetal bovine serum or human platelet lysate. Proliferation curves were performed as a function of time from the cell culture and used to calculate the population doubling time. Immunophenotyping and differentiation tests were used to identify and characterize the hADSCs. Human ADSCs isolated and cultured in conventional or xenobiotic-free conditions peaked at different days but achieved similar maximum proliferation. The hADSCs differentiation ability was similar in all groups. The characterization of hADSCs by flow cytometry showed low contamination of the cultures by other cell types. The xenobiotic-free methodology described in this study is a feasible and reproducible alternative for isolation and proliferation of hADSCs. This methodology is in accordance with the recommendations of the National Health Surveillance Agency, which proposes avoidance of xenobiotic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228. https://doi.org/10.1089/107632701300062859

    Article  CAS  PubMed  Google Scholar 

  2. Gimble JM, Bunnell BA, Chiu ES, Guilak F (2011) Concise review: Adipose-derived stromal vascular fraction cells and stem cells: let’s not get lost in translation. Stem cells (Dayton, Ohio) 29(5):749–754. https://doi.org/10.1002/stem.629

    Article  Google Scholar 

  3. Baer PC, Geiger H (2012) Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells Int 2012:812693. https://doi.org/10.1155/2012/812693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bassi G, Pacelli L, Carusone R, Zanoncello J, Krampera M (2012) Adipose-derived stromal cells (ASCs). Transfus Apheres Sci 47(2):193–198. https://doi.org/10.1016/j.transci.2012.06.004

    Article  Google Scholar 

  5. Yang S, Pilgaard L, Chase LG, Boucher S, Vemuri MC, Fink T, & Zachar V (2012) Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells. Tissue Eng C 18(8): 593–602

  6. Orgun D, Mizuno H (2017) Multipotency and secretome: the mechanisms behind the regenerative potential of adipose-derived stem cells. Plast Aesthet Res 4:32–40. https://doi.org/10.20517/2347-9264.2016.109

    Article  Google Scholar 

  7. Stessuk T, Puzzi MB, Chaim EA, Alves PCM, de Paula EV, Forte A, Ribeiro-Paes JT (2016) Platelet-rich plasma (PRP) and adipose-derived mesenchymal stem cells: stimulatory effects on proliferation and migration of fibroblasts and keratinocytes in vitro. Arch Dermatol Res 308(7):511–520. https://doi.org/10.1007/s00403-016-1676-1

    Article  CAS  PubMed  Google Scholar 

  8. Varghese J, Griffin M, Mosahebi A, Butler P (2017) Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 8(1):45. https://doi.org/10.1186/s13287-017-0483-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellei B, Migliano E, Tedesco M, Caputo S, Picardo M (2017) Maximizing non-enzymatic methods for harvesting adipose-derived stem from lipoaspirate: technical considerations and clinical implications for regenerative surgery. Sci Rep 7(1):10015. https://doi.org/10.1038/s41598-017-10710-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marcelino MY, Fuoco NL, Quaglio AEV, de Camargo Bittencourt RA, Garms BC, da Motta Conceição TH et al (2015) Cell therapy in experimental model of inflammatory bowel disease. J Coloproctol 35(1):20–27. https://doi.org/10.1016/j.jcol.2014.06.004

    Article  Google Scholar 

  11. Naji A, Favier B, Deschaseaux F, Rouas-Freiss N, Eitoku M, Suganuma N (2019) Mesenchymal stem/stromal cell function in modulating cell death. Stem Cell Res Ther 10(1):56. https://doi.org/10.1186/s13287-019-1158-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bieback K, Hecker A, Schlechter T, Hofmann I, Brousos N, Redmer T et al (2012) Replicative aging and differentiation potential of human adipose tissue-derived mesenchymal stromal cells expanded in pooled human or fetal bovine serum. Cytotherapy 14(5):570–583. https://doi.org/10.3109/14653249.2011.652809

    Article  CAS  PubMed  Google Scholar 

  13. Bieback K, Wuchter P, Besser D, Franke W, Becker M, Ott M et al (2012) Mesenchymal stromal cells (MSCs): science and f(r)iction. J Mol Med 90(7):773–782. https://doi.org/10.1007/s00109-012-0915-y

    Article  PubMed  Google Scholar 

  14. Jung S, Panchalingam KM, Wuerth RD, Rosenberg L, Behie LA (2012) Large-scale production of human mesenchymal stem cells for clinical applications. Biotechnol Appl Biochem 59(2):106–120. https://doi.org/10.1002/bab.1006

    Article  CAS  PubMed  Google Scholar 

  15. Escobedo-Lucea C, Bellver C, Gandia C, Sanz-Garcia A, Esteban FJ, Mirabet V et al (2013) A xenogeneic-free protocol for isolation and expansion of human adipose stem cells for clinical uses. PLoS ONE 8(7):e67870. https://doi.org/10.1371/journal.pone.0067870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03125-1

    Article  PubMed  Google Scholar 

  17. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International So. Cytotherapy 15(6):641–648. https://doi.org/10.1016/j.jcyt.2013.02.006

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ginani F, Soares D, Barboza C (2013) Rendimento de Células Mesenquimais do Tecido Adiposo Submetidas a Diferentes Protocolos de Extração. Revista Brasileira de Ciências da Saúde 17(1):65–70. https://doi.org/10.4034/RBCS.2013.17.01.08

    Article  Google Scholar 

  19. Leslie SK, Cohen DJ, Sedlaczek J, Pinsker EJ, Boyan BD, Schwartz Z (2013) Controlled release of rat adipose-derived stem cells from alginate microbeads. Biomaterials 34(33):8172–8184. https://doi.org/10.1016/j.biomaterials.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  20. Williams S (1995) Collagenase lot selection and purification for adipose tissue digestion. Cell Transpl 4(3):281–289. https://doi.org/10.1016/0963-6897(95)00006-J

    Article  CAS  Google Scholar 

  21. Carvalho PP, Gimble JM, Dias IR, Gomes ME, Reis RL (2013) Xenofree enzymatic products for the isolation of human adipose-derived stromal/stem cells. Tissue Eng C 19(6):473–478. https://doi.org/10.1089/ten.tec.2012.0465

    Article  CAS  Google Scholar 

  22. Stein A (2007) Decreasing variability in your cell culture. Biotechniques 43(2):228–229. https://doi.org/10.2144/000112561

    Article  PubMed  Google Scholar 

  23. Bernardi M, Albiero E, Alghisi A, Chieregato K, Lievore C, Madeo D et al (2013) Production of human platelet lysate by use of ultrasound for ex vivo expansion of human bone marrow–derived mesenchymal stromal cells. Cytotherapy 15(8):920–929. https://doi.org/10.1016/j.jcyt.2013.01.219

    Article  CAS  PubMed  Google Scholar 

  24. Arrigoni E, Lopa S, de Girolamo L, Stanco D, Brini AT (2009) Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res 338(3):401–411. https://doi.org/10.1007/s00441-009-0883-x

    Article  PubMed  Google Scholar 

  25. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4): 315–317

  26. Bianchi F, Maioli M, Leonardi E, Olivi E, Pasquinelli G, Valente S et al (2013) A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transpl 22(11):2063–2077. https://doi.org/10.3727/096368912X657855

    Article  Google Scholar 

  27. Shah FS, Wu X, Dietrich M, Rood J, Gimble JM (2013) A non-enzymatic method for isolating human adipose tissue-derived stromal stem cells. Cytotherapy 15(8):979–985. https://doi.org/10.1016/j.jcyt.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Tozetti PA, Caruso SR, Mizukami A, Fernandes TR, da Silva FB, Traina F et al (2017) Expansion strategies for human mesenchymal stromal cells culture under xeno-free conditions. Biotechnol Prog 33(5):1358–1367. https://doi.org/10.1002/btpr.2494

    Article  CAS  PubMed  Google Scholar 

  29. Diretoria Colegiada da Agência Nacional de Vigilância Sanitária (ANVISA). (2011). RESOLUÇÃO - RDC N° 9, de 14 de Março de 2011 [Dispõe sobre o funcionamento dos Centros de Tecnologia Celular para fins de pesquisa clínica e terapia e dá outras providências]. Diretoria Colegiada da Agência Nacional de Vigilância Sanitária (ANVISA).

  30. Blande IS, Bassaneze V, Lavini-Ramos C, Fae KC, Kalil J, Miyakawa AA et al (2009) Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate. Transfusion 49(12):2680–2685. https://doi.org/10.1111/j.1537-2995.2009.02346.x

    Article  PubMed  Google Scholar 

  31. Shih DT-B, Chen J-C, Chen W-Y, Kuo Y-P, Su C-Y, Burnouf T (2011) Expansion of adipose tissue mesenchymal stromal progenitors in serum-free medium supplemented with virally inactivated allogeneic human platelet lysate. Transfusion 51(4):770–778. https://doi.org/10.1111/j.1537-2995.2010.02915.x

    Article  PubMed  Google Scholar 

  32. Lindroos B, Suuronen R, Miettinen S (2011) The potential of adipose stem cells in regenerative medicine. Stem Cell Rev Rep 7(2):269–291. https://doi.org/10.1007/s12015-010-9193-7

    Article  PubMed  Google Scholar 

  33. Kocaoemer A, Kern S, Klüter H, Bieback K (2007) Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells 25(5):1270–1278. https://doi.org/10.1634/stemcells.2006-0627

    Article  CAS  PubMed  Google Scholar 

  34. Trojahn Kølle S-F, Oliveri RS, Glovinski PV, Kirchhoff M, Mathiasen AB, Elberg JJ et al (2013) Pooled human platelet lysate versus fetal bovine serum—investigating the proliferation rate, chromosome stability and angiogenic potential of human adipose tissue-derived stem cells intended for clinical use. Cytotherapy 15(9):1086–1097. https://doi.org/10.1016/j.jcyt.2013.01.217

    Article  CAS  PubMed  Google Scholar 

  35. Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J et al (2010) A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS ONE 5(4):e10246. https://doi.org/10.1371/journal.pone.0010246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Tadeu Ribeiro-Paes.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuoco, N.L., de Oliveira, R.G., Marcelino, M.Y. et al. Efficient isolation and proliferation of human adipose-derived mesenchymal stromal cells in xeno-free conditions. Mol Biol Rep 47, 2475–2486 (2020). https://doi.org/10.1007/s11033-020-05322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05322-9

Keywords

Navigation