Skip to main content
Log in

Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Glaucoma is a disease characterized by damaging the optic nerve head, this can result in severe vision loss. An early detection and a good treatment provided by the ophthalmologist are the keys to preventing optic nerve damage and vision loss from glaucoma. Its screening is based on the manual optic cup and disc segmentation to measure the vertical cup to disc ratio (CDR). However, obtaining the regions of interest by the expert ophthalmologist can be difficult and is often a tedious task. In most cases, the unlabeled images are more numerous than the labeled ones.We propose an automatic glaucoma screening approach named Super Pixels for Semi-Supervised Segmentation “SP3S”, which is a semi-supervised superpixel-by-superpixel classification method, consisting of three main steps. The first step has to prepare the labeled and unlabeled data, applying the superpixel method and bringing in an expert for the labeling of superpixels. In the second step, We incorporate prior knowledge of the optic cup and disc by including color and spatial information. In the final step, semi-supervised learning by the Co-forest classifier is trained only with a few number of labeled superpixels and a large number of unlabeled superpixels to generate a robust classifier. For the estimation of the optic cup and disc regions, the active geometric shape model is used to smooth the disc and cup boundary for the calculation of the CDR. The obtained results for glaucoma detection, via an automatic cup and disc segmentation, established a potential solution for glaucoma screening. The SP3S performance shows quantitatively and qualitatively similar correspondence with the expert segmentation, providing an interesting tool for semi-automatic recognition of the optic cup and disc in order to achieve a medical progress of glaucoma disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. A bootstrap sample L is, for example, obtained by randomly drawing n observations with replacement from the training sample \(L_n\) each observation with a probability 1/n to be drawn.

References

  • Abramoff, M. D., Alward, W. L. M., Greenlee, E. C., Shuba, L., Kim, C. Y., Fingert, J. H., et al. (2007). Automated segmentation of the optic disc from stereo color photographs using physiologically plausible features. Investigative Ophthalmology and Visual Science, 48(4), 1665. doi:10.1167/iovs.06-1081.

    Article  Google Scholar 

  • Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282. doi:10.1109/TPAMI.2012.120.

    Article  Google Scholar 

  • Benazzouz, M., Baghli, I., & Chikh, M. A. (2013). Microscopic image segmentation based on pixel classification and dimensionality reduction. The International Journal of Imaging Systems and Technology, 23(1), 22–28.

    Article  Google Scholar 

  • Blum, A., & Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. Proceedings of the Eleventh Annual Conference on Computational Learning Theory, New York, NY, USA, COLT’, 98, 92–100.

    Article  MathSciNet  Google Scholar 

  • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140. doi:10.1023/A:1018054314350.

    MathSciNet  MATH  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  MATH  Google Scholar 

  • Chapelle, O., Schölkopf, B., & Zien, A. (2006). Semi-supervised Learning. Cambridge, MA: MIT Press.

    Book  Google Scholar 

  • Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K., Tan, N. M., Cheng, C. Y., Tham, Y. C., & Wong, T. Y. (2013a). Superpixel classification based optic disc segmentation. In Proceedings of the 11th Asian conference on computer vision-volume Part II, ACCV’12 (pp. 293–304). Springer, Berlin. doi:10.1007/978-3-642-37444-9_23.

  • Cheng, J., Liu, J., Xu, Y., Yin, F., Wong, D. W. K., Tan, N. M., et al. (2013). Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Transactions on Medical Imaging, 32(6), 1019–1032. doi:10.1109/TMI.2013.2247770.

    Article  Google Scholar 

  • Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active shape models-their training and application. Computer Vision and Image Understanding, 61(1), 38–59. doi:10.1006/cviu.1995.1004.

    Article  Google Scholar 

  • Cornuéjols, A., & Miclet, L. (2010). Apprentissage artificiel : Concepts et algorithmes. Eyrolles. http://hal.inria.fr/inria-00538947.

  • Crowston, J. G., Hopley, C. R., Healey, P. R., Lee, A., & Mitchell, P. (2004). The effect of optic disc diameter on vertical cup to disc ratio percentiles in a population based cohort: the blue mountains eye study. The British Journal of Ophthalmology, 88(6), 766–770. doi:10.1136/bjo.2003.028548.

    Article  Google Scholar 

  • Danesh-Meyer, H., Gaskin, B., Jayusundera, T., Donaldson, M., & Gamble, G. (2006). Comparison of disc damage likelihood scale, cup to disc ratio, and heidelberg retina tomograph in the diagnosis of glaucoma. British Journal of Ophthalmology, 90(4), 437–441.

    Article  Google Scholar 

  • Deng, C., & Guo, M. (2011). A new co-training-style random forest for computer aided diagnosis. Journal of Intelligent Information Systems, 36(3), 253–281.

    Article  Google Scholar 

  • Dietterich, T. G., & Bakiri, G. (1991). Error-correcting output codes: A general method for improving multiclass inductive learning programs. In In Proceedings of AAAI-91 (pp. 572–577). AAAI Press.

  • Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F. (1990). Computer Graphics: Principles and Practice (2nd ed.). Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

    MATH  Google Scholar 

  • Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In L. Saitta (Ed.), Proceedings of the thirteenth international conference on machine learning (ICML 1996) (pp. 148–156). Burlington: Morgan Kaufmann.

    Google Scholar 

  • Fumero, F., Alayon, S., Sanchez, J. L., Sigut, J. F., & Gonzalez-Hernendez, M. (2011). Rim-one: An open retinal image database for optic nerve evaluation. In CBMS, IEEE Computer Society (pp. 1–6). http://dblp.uni-trier.de/db/conf/cbms/cbms2011.html#FumeroASSG11.

  • Giannakeas, N., Karvelis, P. S., Exarchos, T. P., Kalatzis, F. G., & Fotiadis, D. I. (2013). Segmentation of microarray images using pixel classification: Comparison with clustering-based methods. Computers in Biology and Medicine, 43(6), 705–716.

    Article  Google Scholar 

  • Haleem, M. S., Han, L., van Hemert, J., & Li, B. (2013). Automatic extraction of retinal features from colour retinal images for glaucoma diagnosis: A review. Computerized Medical Imaging and Graphics, 37(7), 581–596. doi:10.1016/j.compmedimag.2013.09.005.

    Article  Google Scholar 

  • Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 832–844. doi:10.1109/34.709601.

    Article  Google Scholar 

  • Joshi, G. D., Sivaswamy, J., & Krishnadas, S. R. (2011). Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Transactions on Medical Imaging, 30(6), 1192–1205. doi:10.1109/TMI.2011.2106509.

    Article  Google Scholar 

  • Kande, G. B., Subbaiah, P. V., & Tirumala, S. S. (2010). Unsupervised fuzzy based vessel segmentation in pathological digital fundus images. The Journal of Medical Systems, 34(5), 849–858.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1987). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. Advances in Neural Information Processing Systems, 7, 231–238.

    Google Scholar 

  • Lalonde, M., Beaulieu, M., & Gagnon, L. (2001). Fast and robust optic disc detection using pyramidal decomposition and hausdorff-based template matching. IEEE Transactions on Medical Imaging, 20(11), 1193–1200.

    Article  Google Scholar 

  • Li, C., Kao, C. Y., Gore, J. C., & Ding, Z. (2007). Implicit active contours driven by local binary fitting energy. In CVPR, IEEE Computer Society. http://dblp.uni-trier.de/db/conf/cvpr/cvpr2007.html#LiKGD07.

  • Li, H., & Chutatape, O. (2004). Automated feature extraction in color retinal images by a model based approach. IEEE Transactions on Biomedical Engineering, 51(2), 246–254. doi:10.1109/TBME.2003.820400.

    Article  Google Scholar 

  • Li, M., & Zhou, Z. H. (2007). Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 37(6), 1088–1098. doi:10.1109/TSMCA.2007.904745.

    Article  Google Scholar 

  • Maeireizo, B., Litman, D., & Hwa, R. (2004). Co-training for predicting emotions with spoken dialogue data. In Proceedings of the 42th annual meeting of the association for computational linguistics (ACL-2004).

  • Merickel, M. B., Abramoff, M. D., Sonka, M., & Wu, X. (2007). Segmentation of the optic nerve head combining pixel classification and graph search. Proceedings of the SPIE, 6512, 651, 215–651, 215–651, 215–10. doi:10.1117/12.710588.

  • Mittapalli, P. S., & Kande, G. B. (2016). Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomedical Signal Processing and Control, 24, 34–46. doi:10.1016/j.bspc.2015.09.003.

    Article  Google Scholar 

  • Mohamed, N., Zulkifley, M., & Hussain, A. (2015). On analyzing various density functions of local binary patterns for optic disc segmentation. In 2015 IEEE symposium on computer applications industrial electronics (ISCAIE) (pp. 37–41).

  • Muramatsu, C., Nakagawa, T., Sawada, A., Hatanaka, Y., Hara, T., Yamamoto, T., et al. (2011). Automated segmentation of optic disc region on retinal fundus photographs: Comparison of contour modeling and pixel classification methods. Computer Methods and Programs in Biomedicine, 101(1), 23–32.

    Article  Google Scholar 

  • Neubert, P., & Protzel, P. (2012). Superpixel benchmark and comparison. In Proceedings of Forum Bildverarbeitung, Regensburg, Germany.

  • Nigam, K., & Ghani, R. (2000). Analyzing the effectiveness and applicability of co-training. In Proceedings of the ninth international conference on information and knowledge management (pp. 86–93). ACM, New York, NY, USA, CIKM ’00. doi:10.1145/354756.354805.

  • Shaarawy, T., Sherwood, M., & Crowston, J. (2009). Glaucoma: Medical diagnosis and therapy. ClinicalKey 2012, Saunders/Elsevier. https://books.google.fr/books?id=-1wtvjCY6dcC.

  • Walter, T., & Klein, J. C. (2001). Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques. In Proceedings of the second international symposium on medical data analysis (pp. 282–287). Springer, London, UK, UK, ISMDA ’01. http://dl.acm.org/citation.cfm?id=646351.691036.

  • Wang, Q., & Boyer, K. L. (2012). The active geometric shape model: A new robust deformable shape model and its applications. Computer Vision and Image Understanding, 116(12), 1178–1194. doi:10.1016/j.cviu.2012.08.004.

    Article  Google Scholar 

  • Wong, D., Liu, J., Lim, J., Jia, X., Yin, F., Li, H., & Wong, T. (2008). Level-set based automatic cup-to-disc ratio determination using retinal fundus images in argali. In Engineering in medicine and biology society, 2008. EMBS 2008. 30th Annual international conference of the IEEE (pp 2266–2269). doi:10.1109/IEMBS.2008.4649648.

  • Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.

    Article  MathSciNet  MATH  Google Scholar 

  • Xu, Y., Xu, D., Lin, S., 0001, J. L., Cheng, J., lui Cheung, C. Y., Aung, T., & Wong, T. Y. (2011). Sliding window and regression based cup detection in digital fundus images for glaucoma diagnosis. In G. Fichtinger, A. L. Martel, T. M. Peters (eds.) MICCAI (3), Springer, Lecture Notes in Computer Science (vol. 6893, pp. 1–8). http://dblp.uni-trier.de/db/conf/miccai/miccai2011-3.html#XuXLLCCAW11.

  • Xu, Y., Duan, L., Lin, S., Chen, X., Wong, D. W. K., & Wong, T. Y., et al. (2014). Optic cup segmentation for glaucoma detection using low-rank superpixel representation. In Proceedings of the international conference on medical image computing and computer assisted intervention (pp. 788–795). Boston, Massachusetts.

  • Yarowsky, D. (1995). Unsupervised word sense disambiguation rivaling supervised methods. In Proceedings of the 33rd annual meeting on association for computational linguistics, Association for computational linguistics (pp. 189–196). Stroudsburg, PA, USA, ACL ’95. doi:10.3115/981658.981684.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed El Amine Bechar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bechar, M.E., Settouti, N., Barra, V. et al. Semi-supervised superpixel classification for medical images segmentation: application to detection of glaucoma disease. Multidim Syst Sign Process 29, 979–998 (2018). https://doi.org/10.1007/s11045-017-0483-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-017-0483-y

Keywords

Navigation